Posts Tagged ‘Driverless cars’

Why are electric vehicles not selling in Ireland?

Broadcast on Today with Sean O’Rourke, RTE Radio 1, 21-09-2016

tesla-model-s

The Tesla Model S electric cars which are making inroads into the luxury class car market in the USA will be available for sale in Ireland in 2017 [Picture source: http://www.mashable.com]

In 2008, the then Coalition government of FF, PDs and the Green Party, announced a target of having 200,000 electric vehicles (EVs) on Irish roads.

It was an ambitious target, yet eight years later, despite the building of infrastructure to support electric cars, and financial incentives, there are only 2,000 EVs on our roads – that’s a mere one percent of the Government’s original target.

So why is it that sales of electric cars have not taken off in Ireland, compared to some other countries and is this likely to change any time soon?

Infrastructure

The infrastructure supporting electric cars is good, and one of the most advanced in the world, so that’s not an issue.

There  are 1,400 charge points between the Republic of Ireland and Northern Ireland. These have been set up by the ESB e cars unit on an all Ireland basis. The idea is that with one electric car access card you can use any of the charger access points throughout the country – north or south.

This is a better system than in the the UK where different councils and different regions would have developed their own infrastructure, and there is no inter operability between them. The charger plugs are the same, but the driver of an electric car in Britain would need five or six different access cards to use the EV charge points around the UK.

Each charge point in Ireland has intelligence built in so that information is sent back to the ESB e car charge point management system. This system monitors the availability of chargers, whether they are currently in use or not.

If there is an issue such as a cable gets blocked the system can unblock the cable. The ESB from the start decided to install a standard electric charge point in  every town with 1,500 people or more.

The ESB have realised since that a lot more people are looking for fast chargers than had been anticipated at the start of the infrastructural roll out. There are 22kw chargers with two points in each one –  and the Renault Zoe can charge in an hour off that. Then there are the 50kw fast chargers that can charge a car up to 80% in 25 minutes. There are about 75 of these, and one every 50 km of motorway on the main roads.

The idea is that if you leave your house in Dublin heading for Galway and you drive with a full tank, you can stop, get a fast charge and keep going. Most of the in car Sat Navs on cars are linked into the latest information on the nationwide network of charge points which is constantly updated by ESB e cars.

The ESB has a 24-hour call centre in Cork, and there are maintenance teams, response units if anyone breaks down. The charge points can all be operated remotely now – one card for all of Ireland – and in the near future the plan is to have an app that lets you know not just where the nearest charge points on, but whether it is currently in use.

Turnoffs

The three main turnoffs people cite when it comes to their reluctance to buy EVs come under three headings: performance, range and cost.

There is an idea out there that EVs are slow and cumbersome, like the old milk floats we saw around Dublin in the 1980s, but, I know, from driving a Nissan Leaf, that this is not the case. The performance of the car is excellent, and there is more than enough zip and acceleration to make electric cars ideal around the city.

You could put somebody into the smallest electric vehicle up beside a Ferrari at a traffic lights and the electric car will get away quicker. The high powered Ferrari will catch him after couple of seconds but there is great zip  in an electric car, and overtaking is no problem.

The  latest Model S Tesla electric cars can go from 0-100 in 2.6 seconds if you put a Tesla car onto its so called ‘ludicrous’ mode; better than the most powerful Ferrari with an IC engine.

People are concerned about range, and, while surveys of electric car users show that range issues are manageable, it is still an issue for potential buyers.

The industry experts believe that maximum range, which is around 150 or 160km for many electric cars needs to reach 300 or 400 km before ‘range anxiety’ is no longer an issue. That could happen as early as 2018, the experts tell me.

The range of the current Nissan Leaf, which I drove myself a few weeks ago, is between 160 and 165 km after a full charge at home. The home charge points, which are installed for free by the ESB currently for anyone purchasing an electric vehicle, are 16amp, single phase chargers.

A full charge is, however, not enough to get the car from Dublin to Galway (208 km) so anyone planning that trip, must plan to stop at a motorway charge point for about 20 minutes to get a ‘top up’ charge.  

For range to improve the existing battery technology must be improved. There has been huge investment in this area, in laboratories around the world, particularly in Japan, Korea and the US, but even a little here in Ireland.

The flamboyant US-based science entrepreneur, Elon Musk, who is the Chief Executive Officer of Tesla Motors, a hugely innovative and dynamic electric car company, is building what he calls a battery ‘gigafactory’ in Arizona. This is due to go into full production in 2020 when it will produce enough lithium-ion batteries, like the ones in our smartphones, to power 500,000 new electric cars per year. All the raw materials required will be brought to Arizona, and when this factor opens it will double the world’s output of lithium ion batteries.

This will provide some of the economies of scale that have been lacking in the electric car industry up to now, and it should be a ‘game changer’. The electric car is more expensive to build than a ‘normal’ car, even without the battery taken into account, because of this issue of economies of scale.

The average car has about 2,000 moving parts, while the average electric has something like 200. The electric car should be cheaper to manufacture!

The prediction is that somewhere between 2020 and 2025, after Musk’s gigafactory opens, the costs of batteries will go down, and the economies of scale for electric will improve so that there will be cost parity.

That is, for the first time, an electric car will cost the same as a car based on the internal combustion engine. This will be a historic moment for e cars.

In summary then, performance is not an issue, and anyone that gets into a modern electric car will quickly realise that. Range is still an issue for some people, but from 2018, it is expected that electric cars with a range of 400 km will be here, so that issue will disappear.

Cost will remain an issue, until cost parity is reached somewhere between 2020 and 2025. In terms of running costs, the electric car is already far ahead of cars powered by the internal combustion engine.

Many people charge their electric car overnight and, at nighttime rates, the cost works out to be between 10 and 15% of the cost of petrol.  Even when people charge at the daytime rate for electricity, it works out to be about 25% of the cost of petrol.

It costs less than €5 to run an electric car for 100 miles. The cost to run the car for 17,000 miles per annum (average mileage for residential car use in Ireland) will thus, be less than €850.

Authorities

There have been difficulties with some local authorities in terms of having the road marked as an e car space reserved for electric vehicle charging. At the moment someone could find a petrol car parked at the e charging location and there is little that can be done about it, unless the local authority has agreed to mark the space as a space set out for electric car charging only – making it an offence for any other car to park there. Some local authorities have done this, others haven’t. Dun Laoghaire has gone further and offered electric cars free parking for up to four hours.

The ESB is trying to sort out all the questions around people booking charging spaces in advance. These are free, so, if electric sales pick up they are likely to become very busy. There are outstanding questions such as how long in advance should people be permitted to book a space? What should the ESB charge for a booking? What happens if someone books and doesn’t show up? What if someone hooks their car up to a charge point, and goes off to dinner, only returning several hours later, or the next morning, blocking up the space for others?

Comparisons

London is one of the leading cities in the world, when it comes to supporting electric vehicles, and certainly Dublin and other Irish cities and towns could learn a lot about what is going on there, and the picture is changing fast.

London is looking to introduce an ultra low emission zone in central London from 2020. This will be in addition to the congestion charge. There is a £10 charge to drive into central London as things stand, and if you are driving a pre-2015 diesel or a pre-2006 petrol car there is another £10 added on top of that. This is to try and reduce congestion and to improve air quality, primarily.  

The London taxi company has been bought out by Geely, a Chinese electric vehicle company, who have built a new factory in Coventry. Geely have invested £300 million on that factory, and this will churn out new London taxis, which will all be plug in ‘hybrids’ – or mixtures of conventional internal combustion engine and electric.

In the UK as a whole there are now 70,000 electric vehicles on the road which is far ahead of where we are, at 2,000 in Ireland, even accounting for the population difference.

The new Mayor of London, Sadiq Khan, is talking about extending the low emission zone beyond central London, while the central government at Westminster has allocated £600 million to incentivise the purchase of EVs, build infrastructure and support pilot projects, such as electric bus schemes. There are grants available for the manufacturers and purchasers of EVs and an Office of Low Emission Vehicles, or OLEV, has been set up under the control of the UK’s Department of Transport.

Meanwhile, in Norway 25% of all new car sales are now electric. The Norwegians are proposing to ban conventional vehicle sales in 2025. The proposal is that from 2025 on, cars powered by an internal combustion engine using petrol or diesel will no longer be permitted to be sold. This is extraordinary for a nation that has built its wealth on oil reserves in the North Sea, and shows that the days of the internal combustion engine are numbered at least here in Europe.

There have been 25,000 electric vehicles sold in Norway so far this year. It is the transport department that has proposed to the Government that the new policy to be announced in the Spring. The report to the Government, which is being discussed in the Norwegian parliament at the moment has recommended that there be a ban on IC vehicle sales from 2025. It hasn’t been decided yet, however.

Supports

There is a grant which takes €5,000 off the initial purchase price of the electric car, and VRT relief up to €5,000. The ESB provides  free home charge point with the purchase of an EV as well, as well as free public charging (public) and a 24 hour backup call centre should problems arise.

But, clearly these measures have not enough to encourage a higher level of electric vehicle purchases in Ireland and more needs to be done if EVs are to move out of the niche market situation here.

The car market has recovered and we are on target for 155,000 cars to be sold this year, which is still down on the 2008 figure of 187,000.

The market, which survived a near death experience, is probably secure enough to look at new technology like electric again, so that’s positive.

A revised target for EVs in Ireland of 50,000 has been mentioned in the National Energy Efficiency programme, but that, experts believe, will not be reached with the current level of incentives for EVs. More is needed.

Ireland could perhaps look at the US where there are 400,000 EVs on the road. The US gives a Federal tax credit of $7,500 per electric car purchased. On top of that certain states add their own incentives. For example, California gives an additional $2,500 grant, while Colorado gives a tax credit of $6,000.

The US moves seem to be working, in some places at least. For example, 6% of new car sales in San Francisco are now EVs.

Some believe that giving executives incentives to buy electric cars here by reducing their Benefit in Kind is something that might kick start things.

Executives in the US are buying the latest Tesla Model S, which is outselling BMW and Mercedes in that luxury class in California.

These executives buy a new car every three years, and are helping to generate a second hand market for electric cars there too.

Future

The Tesla Model S is outselling BMW, and Mercedes in that luxury class in California. This has grabbed the attention of the German car companies. Berlin has been resisting the tightening of regulations in Brussels on the car industry, particularly on non greenhouse gas causing CO2 emissions.

However, they won’t be able to hold the line forever, as more cities and countries move to improve air quality for its urban citizens. The situation where diesel cars are pumping carcinogenic substances into the air, and risking the health of children in particularly, can’t continue. The car companies have woken up to this, and they are all working on hybrids if not full electric vehicles in anticipation of what is to come.

The big picture, however, is even more threatening for the existing car companies, as driverless technology begins to become reality. The Mercedes E class in its latest ads in Ireland talks of a move towards the autonomous, or driverless car

The Tesla Model S already has all the technology it requires to be driverless and in a test on the Stillorgan dual carriageway it changed lanes without a hitch. The vision of the future is that the transport needs of society is built around a fleet of driverless electric cars, which can be called on demand by phone apps.

This will reduce the need for car ownership, and provide disabled, elderly or children with the means to safely call for a car to get from A to B. The huge amount of space in our cities given over to parking can be used for something else, noise will be eliminated, and air quality vastly improved.

Electric cars set to go driverless

Click above to hear discussion broadcast on Today with Sean O’Rourke, RTE Radio 1, 30th November, ’15

Google Car

Google plans to bring a driverless electric car to market in 2018, and is already road testing driverless vehicles in California (Credit: Google)

Electric cars have been around the late 19th century, but they have never matched the appeal of cars run on either petrol or diesel.

That is all set to change, as the most popular cars on the market in coming decades are likely to be both electric and driverless.

The question is, is Ireland ready for electric, driverless cars, how do they work, are they safe? and how will they potentially make our lives better?

History 

The first commercial electric cars appeared as early as the 1880s and ‘electric drive’ cars as they were called were popular with early drivers.

However, from the turn of the 20th century, there was a growing demand for cheaper automobiles, from the general public.

From the 1920s, petrol was becoming more easily available and cheaper, petrol driven cars had a longer range, had greater horsepower, and the introduction of automatic starting mechanisms in petrol cars increased their appeal to all groups.

Yet, from as early as 1908, when the first Model T Ford’s were mass produced, the popularity of the electric car was waning.

In the mid 1960s the United States Congress introduced the first bills recommending support for the development of a new generation of commercial electric cars to try and deal with the issue of air pollution.

This paved the way for a revival of interest in electric cars in the 1970s, a revival which was further helped following the soar in oil prices following the Oil Crisis of 1973, and the birth of the environmental movement.

It seemed to many back then, 40 years ago, that the time had come for electric cars, but people resisted buying them, due to their cost, so-called ‘range anxiety’ and the daily hassle of recharging their batteries.

The situation stayed like that for the following decades, with electric cars remaining a niche market, but in the last decade two things happened.

Governments, including the Irish government, began actively promoting e cars as a way to reduce emissions of carbon dioxide greenhouse gas, and to reduce reliance on imports of fossil fuels from The Middle East.

In Ireland this mean grants for people buying e cars (there is a 5k grant in place) and tax relief. Allied to that the ESB began building a network of public charging points, and there are now about 2,000 on the island.

The other thing that happened is that battery technology – which has been slow to develop for technical reasons – has started to improve.

Fully electric cars (there are also electric/petrol and electric/diesel hybrids) are totally dependent on batteries, usually lithium ion types.

These batteries, like the ones in our smartphones, are efficient, but the are expensive. This of course, affects the sale price of e cars.

The e car batteries need to be 80 per cent cheaper, some industry analysts say, in order for e cars to break through into mass use, and truly  compete with cars based on the internal combustion engine (ICE).

Some believe it will be possible to make cost cutting improvements to the lithium ion battery, while others say a new battery technology is needed.

Technology 

Electric are based on pretty simple technology, which hasn’t changed all that much since the first electric cars appeared in the 19th century.

One hundred per cent electric cars such as the Nissan Leaf, the Ford Focus Electric and the VW e golf all make use of an electric motor.

There is a battery, of a series of connected batteries, that link to the electric motor and provide the power to drive the car forward.

They are green because they are based on electricity rather than petrol or diesel, but, of course, electricity can be produced by burning fossil fuels.

The battery is vital, as it charges the electric motor, and determines how far the car can travel without a charge, and its performance.

The first battery used in any electric vehicle was an old fashioned lead-acid battery which was itself invented in 1859.

The batteries that are, these days, used in electric cars are lithium ion batteries which are light, and have a good ability to store energy.

The problem with lithium ion batteries, as many of us will know from using smartphones, is that they need to be regularly recharged, and that after hundreds of recharges, they can become depleted, and just ‘die’.

So, there is a desperate need for a new battery technology that do not need to be recharged as often, and don’t die with lots of re charges.

From the buyers point of view, the big downside with electric cars is that they have to be recharged for hours, overnight, and that the driver might still, with a long journey, feel that he might needed a top up recharge.

This is something called ‘range anxiety’ and it’s a well known factor that has turns off buyers and that e car makers are trying to address.

Cost

Yes, there are a few competing options. Perhaps the most promising is one being developed in the UK at Cambridge University.

Scientists there last month announced they had found a way to develop batteries that are one-fifth the coast and weight of current e car batteries.

The technology is called lithium air technology and it’s important because it can reduce the cost of electric cars, while also enabling them to match the range of petrol and diesel cars.

Electric cars, based on these, the scientists say, could drive from London to Edinburgh with a single charge, hugely increasing the range of e cars.

This new technology also produces batteries which can store a lot of energy, and can recharge thousands of times without the battery dying.

Yet, lithium ion batteries, as well all know from our smartphones, have to be recharged often, and after repeated charging they can gradually die.

A lithium air battery can create a voltage from oxygen molecules – air – in the vicinity of the positive electrode. It appears to be a big breakthrough.

This all looks promising, but it is just emerging from the lab, is at the development stage, and may be a decade before it enters the real world.

Disappointing

Sales of e cars in Ireland remain disappointing low, despite the efforts of Government to promote e cars through subsidies, grants and tax breaks.

The ESB have been actively promoting the greater use of e cars in Ireland by building a network of public charging points and grants. Grants are of 5k are available from  the Sustainable Energy Authority of Ireland for buyers of new e cars.

Minister Coveney has been pictured driving a fully electric Nissan Leaf, and the ESB has been busy building infrastructure to support e cars.

Yet, in 2014, Ireland’s Central Statistics Office reported that just 222 electric cars were sold, which, is poor, but significantly up on the 55 cars that were sold in 2013.

The Government has set itself a target of 230,000 e cars being in use in Ireland by 2020. We currently have a little over 10,000 e cars here.

To compare, there were 13,929 petrol cars sold in 2014, and 47,559 diesel cars. So, electric is still very much a niche market in Ireland.

Ireland might use Norway as a comparison, a country of similar size, where 23, 390 electric vehicles were registered in 2014 alone.

The Norwegians have encouraged this through the lack of VAT on e cars, and free car parking, free access to bus lanes and free public charging points for e car owners. Ireland has followed some of these measures.

Barriers 

People are still reluctant to purchase e cars, and one of the mainr reasons is the ‘range anxiety’ already mentioned  as well as the perceived hassle of charging batteries for hours overnight.

People might also enjoy driving, and feel that an electric car, running silently without gear changes, is not what they traditionally enjoy.

For e cars to really take hold here, the Government might have to follow Norway’s lead and allow e cars travel in bus lanes, and park for free.

Allied to that, the cost of e cars needs to come down. I think they really need to be cheaper than existing petrol or diesel cars to break through.

They might also need to have a ‘unique selling point’ that marks them out as distinctly different or superior to petrol or diesel cars.

There are signs that this might happen, as electric cars are set to become driverless, and that this will happen a lot faster than we might imagine.

Driverless 

Hard-nosed analysts of the global car industry are convinced driverless cars WILL happen, and will happen in the near future.

Certainly, companies with huge reputations like Google, and Apple are reportedly investing in developing a driverless, electric car.

Volvo are working on one too, as are BMW, and legislation has already been passed in some US states permitting cars to be driverless.

VW too, who are under huge pressure these days of course, are reportedly work on an electric driverless car of their own.

The people who look at these things closely are expecting that a driverless car will be for sale inside the next five years.

The market potential is huge, according to the Boston Consulting Group, who estimate the driverless car market will be worth $42 billion by 2015.

The Google X driverless car is expected to hit the market in 2018, with Apple’s Project Titan to arrive in or around the same time.

It is very interesting that technology companies like Google and Apple are investing so heavily and secretively in driverless cars.

These giants clearly believe that people will be travelling in driverless, electric cars in future, using the Net, Apps, or whatever else freely.

Inside a Google car, Google have a captive audience to promote all kinds of other technology which people will use freely on their way to work.

Many of the barriers that would have blocking the development of the driverless car are being removed.

The two biggest blocks are legislation and the willingness of people to use them. A lot is happening on the legislation side.

For example, six states in the US have already passed legislation allowing the testing of driverless cars out on the public roads.

The world has already had its first driverless car crash, which happened in July last when a driverless Lexus crashed and three Google employees got minor injuries.

Also, just last week a the Google driverless car had an encounter with the law in Silicon Valley California for driving 24 mph in a 35 mph zone.

The police officer pulled over the prototype car and spoke with the people inside, but no ticket was issued.

Legislation

Irish and UK legislation would have to be substantially changed to allow for driverless cars to operate here, but it needs to happen urgently.

The UK is addressing this in law, and we need to too.

The other legal issue people would have is who is to blame if a driverless car crashes. People don’t want to be held account for something that is not under their control – understandably.

This led Volvo last month to say that it would take liability for any crash of any of its driverless cars – others will probably follow.

But, generally speaking the driverless car will be far safer than a car piloted by a human, who may be tired, distracted, or drunk.

Game changer 

We have had technologies in our cars which are not under our control already for years.

The best example perhaps would be ABS braking. This has been around since the 1980s, where control of the braking is taken from the driver to best ensure that wheels don’t lock, and spin out of control.

There are also systems which help us to park -self parking systems – where sensors guide a car as well as cruise control.

But, the vision for a driverless car goes way beyond these familiar features to a situation where a person, or persons, sit in, type or speak in a destination point, and then sit back and relax, read or work.

The driverless car will be able to sense its surrounding using existing technologies like RADAR, GPS and computer vision.

They will update their maps based on sensory input, and be able to track their position everywhere and adjust to all driving conditions.

Most of the ideas for driverless envisage a person in a driver’s seat, with a cloud, or wifi connection to other vehicles all around them.

The vehicles will communicate each other’s position and destination, and share the sensory input on road blocks,  accidents or weather conditions.

All that intelligence will better get everyone safely from A to B. Dublin might have a swarm of electric vehicles, efficiently moving all of us.

A giant, traffic management system, with zero pollution, and an order of magnitude safer than what have. Safety, and efficiency might drive this.

It is not about breakthrough technology it is about incorporating a range of existing technology into a 21st century vehicle, which has, up to now, been run on an internal combustion engines, born in the 19th century.

 

 

 

%d bloggers like this: