Archive for the ‘Medical’ Category

The incredible story of the “immortal” Henrietta Lacks

Interview with Myles Dungan on The History Show, RTE Radio 1, 22nd January.

The Immortal life of Henrietta Lacks based on the book written by Rebecca Skloot in 2010 will appear on our cinema screens this year, with Oprah Winfrey in the role of Henrietta.

But, who was Henrietta Lacks, what was her story, why is her life described as “immortal” and how has it influenced the lives of millions of people around the world since her death in 1951?

henrietta-lacks-pic

Henrietta Lacks, pictured, died from cervical cancer in 1951, aged 31. Cancer cells removed from her body without her knowledge or permission were used to produce the polio vaccine Credit (Henrietta Lacks Foundation).

Old South

Henrietta Lacks was a poor black woman from the tobacco fields of the state of Virginia, USA, part of the old South.

She has made a huge contribution to mankind, because of the cells she unwittingly gave to the world, so called ‘HeLa cells’ which were taken from the cancer that killed her in 1951 and grown in labs around the world to combat disease, and help scientists develop techniques like cloning and I.V.F.

The cells have been used to produce a vaccine for polio, leading to its eradication in the USA and most parts of the world, but they have also been used to produce commercial revenue. Henrietta didn’t provide ‘consent’ for her cells to be used in this way, but in 1951, consent was not a requirement for doctors to remove cells or tissues from patients for research purposes.

Henrietta was born with the name Loretta Pleasant on the 1st August 1920 in Roanoke, the biggest town, but still a small-ish city, in southwestern Virginia. At some stage, for reasons not clear, she became Henrietta, a name that was shortened to ‘Hennie’ after the death of her mother.

Henrietta’s mother died when Henrietta was 4 and ‘Hennie’ and her nine siblings were sent to live with various aunts and uncles and cousins in the little farming town of Clover, Virginia.

Hennie ended up with her grandfather, who was also trying to raise one of Hennie’s first cousins – David. They lived in a two-story cabin built of hand-carved logs, and held together by pegs that was once the slave quarters of their ancestors.

In 1924 rural Virginia, black people were no longer slaves, but their social, economic and living circumstances, even the actual buildings that that lived in, hadn’t changed much since the Emancipation Proclamation was issued by President Abraham Lincoln on 1st January 1863. This executive order changed the federal legal status of some 3 million black slaves trapped in the Confederate south from ‘slave’ to ‘free’.

Slave quarters

The former slave quarters that Hennie found herself living in with her grandfather and cousin David looked over the family cemetery where Hennie’s ancestors, who were black, but some of whom were also white, including one of her great grandfathers, were buried.

All around the slave house, or ‘home house’ as its residents called it were hundreds of acres of tobacco fields. The area was, and is known as Lacks Town, as many of the people living in and around the tobacco fields were ‘kin’ to Henrietta.

Hennie had honey coloured skin, a round face, and an attractive, welcoming smile. After a time, according to cousins accounts, Hennie and David, who was called ‘Day’ became an item, even though they had been raised like a brother and sister.

Children followed. Lawrence was born in 1935, and Elsie, who was “deaf and dumb”, and ended up later in a home for the Negro Insane, was born in 1939.

In 1941, Hennie and Day got married, and made plans to get out of Clover, forget the tough life of tobacco farming, and join the many black people that were heading for Baltimore and Washington DC to get jobs in the booming wartime shipyards and steel mills.

Hennie, according to accounts, settled into her new life as housewife in a brick city apartment, but she missed the country and would often grab her kids, and pile them onto a bus for a trip back to Clover.

It seems Hennie loved being a mother, and more children came with Sonny born in 1947, and Deborah in 1949. Their fifth child, Joe, was born in 1950.

Henrietta’s illness

A few months after Joe was born Hennie shared a secret with her cousin Sadie, Sadie later recalled. She started bleeding, even though it was not her time of the month, and one morning when she was taking a bath she felt a lump.

Hennie decided to attend the outpatient centre at Johns Hopkins Hospital in Baltimore – a renowned centre for medical excellence in February 1951 and the gynaecologist on duty when Henrietta came in was Dr Howard Jones. Dr Jones examined Henrietta and found something remarkable: a glistening, smooth growth that resembled what he called “purple Jell-O” (jelly).

The growth was about the size of a US quarter, and positioned at the lower right of Henrietta’s cervix. The growth bled easily when it was touched.

Dr Jones thought it might be an infection and tested for syphilis, but the results came back negative. He ordered a biopsy and got the diagnosis: sadly for Hennie, it was cancer.

Henrietta came back for treatment 8 days later, and another doctor took another slice off her tumour. Henrietta wasn’t told about this, but, at the time, that was normal medical practice.

Capsules of radium were placed around her cervix to try and kill the cancer cells and she was released from hospital and went home. Henrietta didn’t tell anyone about her illness, and continued with home life as normal.

She came back regularly for treatment, but the cancer cells were growing faster than radium could kill them and it was difficult for her now to hide her pain.

She was admitted to hospital for the last time in August 1951, for what would be the last time. A few months later, on 4th October 1951 Henrietta died, aged 31, with an autopsy showing that she had cancerous lumps in her chest cavity, lungs, liver, kidney and right through her bladder. The cancer had been relentless, and grew and spread at a pace that proved uncontrollable.

Henrietta was buried in an unmarked grave her the ‘home house’ in Clover. Her children remember it as a day when the rain poured from the sky as though heaven were weeping for ‘Hennie’.

Family devastation

The death of Hennie was devastating to Henrietta’s family, her husband Day and their five children. This is apparent, as even all these years later they get upset talking about her death, it seems.

Her death was something of a taboo subject, and no-one was comfortable talking about it, as it affected them so deeply.

Day tried to keep the show on the road by working shifts at the shipyard, while minding his three youngest children. Elsie was now in a home for the Negro Insane and family visits were not as frequent was when Henrietta was alive, as she visited Elsie regularly. Lawrence, the eldest left to join the Army.

Two relatives moved in to live with Day and the three children, one of which was described as ‘evil’ and life became brutal and horrible, with the children being beaten for no reason and having little food to eat.

As the children grew older, they – understandably – wanted to get away as much as possible from the nightmare house in Baltimore and they regularly returned to Clover to work on tobacco, as their mum had done, keeping their abuse a secret.

Elsie died in 1955, aged just 16, and it appears that sadly she had been abused, and she may even have had holes drilled in her head for some kind of human experimentation.

When Henrietta’s children had their own children, it seems that – perhaps sensing something from their parents – they too avoided the subject of their grandmother, how she lived and how she died.

Medical legacy

Henrietta’s family knew nothing until the early 1970s when family members received phone calls from researchers asked for them to donate blood samples. The researchers said that they wanted to find out more about their mother’s genetic make-up.

Naturally, the family members wanted to know why they were interested in this, now, many years after Henrietta’s death. They were then told – and this must have been utterly shocking to them – that part of their mother, some of her cells, were still alive and growing now, more than 20 years after her death.

The Lacks family finally learned that tissue from their mother’s second biopsy in 1951 had been given to Johns Hopkins researcher Dr George Gey, who was searching for a cure to cancer, and had, towards this end, but trying – unsuccessfully – to grow human cells outside the body, so that they could be closed studied in the lab.

Dr Gey’s lab technicians got Henrietta’s cells, but – by now programmed for failure – expected them to do what many previous cell samples had done – live for a short time, a few days tops, then die. Yet, what happened astonished them. Henrietta’s cells multiplied in petri dishes, uncontrollably spreading and piling up on one another.

On the very same day that Henrietta died, 4th October 1951, Gey was appearing on a TV show called ‘Cancer Can be Conquered.” On the show he held a bottle close to the camera, and in it he said was the first human cell line ever grown. This was Henrietta’s legacy.

The cells were called “HeLa cells” by Gey, to acknowledge the first two letters of Henrietta Lacks’ first and last names. He then gave samples out to other researchers around the USA. The idea was that HeLa cells would work enough like normal cells so that doctors could test, probe and unlock their secrets and weaknesses in the lab. This new knowledge, it was hoped, would lead to a cure for cancer.

HeLa cells

The biggest impact, without doubt, that HeLa cells have, so far at least, made on the world is by helping Jonas Salk create a vaccine which has almost eradicated – worldwide – what was a crippling disease affecting children.

Salk infected HeLa cells with the poliovirus – something that could easily be achieved – and studied how they reacted. After a number of years of work, in 1955, he had created a working vaccine.

This received huge attention because polio mainly affects children under 5 years of age, so young children had been dying and the name polio was a terrifying one until Salk came along.

Polio is highly infectious. It kills when some infected children become paralysed and their breathing muscles immobilised. It is still a threat in certain parts of the world, according to the WHO, but the number of cases, worldwide have decreased from 350,000 cases in 1988 to just 74 reported cases in 2015.

It is estimated that the polio vaccine, and, thus, HeLa cells that helped created it, have saved the lives of one million people, many of them young children, around the world since 1955, who would otherwise have died of polio.

In 1952, just three years beforehand, there was a polio outbreak in the USA which killed 3,145 people, including 1,873 children. At that rate, some 192,000 Americans would have died if the polio vaccine had not been available there from 1955.

The HeLA cells were ideal for developing a polio vaccine because they could be easily infected by poliomyelitis, which caused infected cells to die. However, a large volume of HeLa cells were needed to test Salk’s vaccine, and this led to the mass production of HeLa cells from 1953 in a cell culture ‘factory’ at Tuskegee University.

Controversially, however, companies also used HeLa cells to test cosmetics, and to measure the effects of radiation on human cells. They were used to test how human cells responded to other viruses, and were used in a number of cancer trials.

HeLa were the first ‘cell lines’, they stored well, were robust and could be sent out to laboratories all over the world. They replicate very fast, which is useful, but can also cause problems for scientists in terms of contamination of the lab.

HeLa cells have been used to study all kinds of viruses, and helped in the creation of a vaccine to HPV, the human papillomavirus, as well as to act as a testbed for new medications for cancer and Parkinson’s disease. They have also been used to test how certain products, such as cosmetics, affect human cells.

Because some HeLa cells behave differently to others, it has been possible for scientists to isolate a specific cell type, multiple it, and start a new cell line. This method of isolating a cell and keeping it alive is the basic technique behind I.V.F. which is so much part of our world today.

One discovery from HeLa cells has big potential in the fight against cancer. It was found that HeLa cells used an enzyme to repair their DNA and keep functioning when other cells would have died. Anti cancer trials against this enzyme are currently ongoing.

There are some who would say that the importance of HeLa cells in saving lives has been overstated. For example, saving one million lives with the polio vaccine, is small potatoes compared to, say the Measles vaccination, which has saved about 17 million lives since 2000.

Family anger

Henrietta’s family were angry when they finally heard the full story of the HeLa cells. They felt that Johns Hopkins Hospital had removed Henrietta’s cells without permission. The hospital had done that, they didn’t deny it, and neither did they deny that they hadn’t asked permission. Permission to do this wasn’t required back in 1951.

The Lacks family were also confused by all the scientific jargon that started to come their way. I think they their initial reaction was that their mother, and themselves had been exploited by researchers. For instance, they said that they gave blood to the researchers when asked, but the researchers did not bother to follow up with them when results came out or to explain results.

None of the children have developed their mother’s aggressive cancer, so Henrietta left no deadly legacy to her children.

There was a financial issue also, as far as the Lacks family were concerned because biomedical companies in the decades since their mother’s death had been mass producing HeLa cells, like a license to print money, and sending them out all over the world.

Fortunes were being made on the back of their mother’s cells, while they themselves, could even afford health insurance.

They were also apparently hurt that so many people, researchers, scientists and doctors, appeared to know so much about their mother, and that they, her children, knew very little.

Their father Day died in 2002 (41 years after his wife Henrietta) but the family only managed recently to pool together money for a headstone for his grave.

Johns Hopkins have honoured the contribution of Henrietta, and others like her, to their research, but they remain sensitive to criticism of their role in the Lacks’ story. They made the point that the hospital as it was in 1951 can’t be judged by today’s standards, and that patient consent, now a basic standard, wasn’t even considered in 1951.

The HeLa cells, Johns Hopkins state, were given away by their researcher Dr Gey, acting on his own and the hospital never patented the HeLa cells or sold them to make money. Dr Gey, they add was acting with good intent as he passed the cells on in the hope researchers could develop a module from which scientists could learn more about human cell function (and by corally, cancer cell function).

Immortal future?

HeLa cells have today multiplied to the point where they weigh some 20 tonnes, all together, while, according to the US Patent and Trademark Office there are close to 11,000 patents that involve HeLa cells. The cells are so widely available that they can be ordered for delivery on the Internet.

The words on Henrietta’s gravestone, composed by her grandchildren reads:

“In loving memory of a phenomenal woman, wife and mother who touched the lives of many. Here lies Henrietta Lacks (HeLa). Her immortal cells will continue to help mankind forever.”

 

 

 

 

 

 

Ireland and the Race to Mars

First broadcast on Today with Sean O’Rourke (23-11-2016)

mars

The Martian landscape as depicted in The Martian, a film by 20th Century Fox (Credit: 20th Century Fox)

Both NASA and China have announced plans to land rovers on Mars in 2020, while a number of ambitious non governmental organisations also joining the dash to the Red Planet. It is anticipated that a manned mission from Earth to Mars and back will take five years, and Irish researchers and companies are part of global efforts to make sure that a manned Mars mission is a success.

The ‘Race to Mars’ has well and truly started, and, it’s about time some might argue, as it is now 47 years since Neil Armstrong walked on the Moon, and those of us around back then might have expected to see more progress by now.

Unlike the 1960s, when the technology was really being stretched to the limit to get to the Moon, there are far less technical obstacles in the way of us reaching Mars, and the reason we haven’t done so is due to US politics and money.

That said the scientific challenges of getting humans to Mars, establishing a permanent presence there, and returning them safely to Earth are enormous. In October, President Obama set a goal of sending humans to Mars by the 2030s, and commented that he expects to be still around to see it happen.

But, what drove NASA on in the 1960s, of course, was fear of the Soviet Union and the militarisation of space. There is no Soviet Union threatening US existence anymore, but China is showing signs of emerging as viable new rival. The emergence of China as a space rival can only help efforts to get to Mars.

Challenges

Mars is 34 million miles away, and that is more than 140 times further than the Moon. The entire duration of the mission to the Moon in 1969 was just over 8 days, but getting to Mars safely, spending time there and returning safely to Earth will take in the region of 5 years.

On the journey to Mars, the craft must be designed so that it protects the astronauts from cosmic radiation, while providing them with healthy food to eat, and a means to exercise and stay physically and mentally healthy, and prevent the muscle and bone tissue wastage that will impact astronauts living in microgravity.

NASA are planning to have a habitat module where astronauts will eat a healthy diet from crops grown on ‘green walls’ inside the craft. The air and water will be constantly recycled, and the people chosen will be individuals with a high level of psychological resilience who can endure boredom and are not prone to conflict.

The NASA timeline is that Mars astronauts will spend one year preparing for the launch, one year travelling to Mars, 18 months orbiting and then landing on Mars, and 18 further months on the surface of Mars. They will come home when the Earth and Mars are again favourably aligned to make the return trip home.

This will be a space mission like none in human history requiring a lot of material, some experimental, some to sustain life, some of which would be sent ahead of the crew, such a descent vehicle which would await the astronauts while in Mars orbit, and a shelter on the surface of Mars, assembled by robots.

Cost

There are some who doubt that NASA will be able to get humans to Mars by the 2030s, or even 2040s because of some financial realities. It is estimated that the Apollo moon landings cost $140 billion in today’s dollars, while the realistic price tag to get humans on Mars is somewhere around $450 billion.

NASA’s annual budget for human spaceflight is currently around $9 billion, which is a long, long way short. There needs to be another JFK figure to set out the vision, and secure the budget, but the US has little competition, and there is no ‘clear and present danger’ such as the old Soviet Union to give it a push. That said, ‘Red’ China is creeping up again as a threat to the US psyche.

Will it happen? It is probably unlikely that the US taxpayer will be prepared to pay the entire $450 billion bill to do something for the vague good of mankind.

Commercial 

The answer might come from NASA taking on Mars as a kind of joint venture with commercial companies such as Elon Musk’s SpaceX. This can help secure private investment and access to potential useful new technologies. For example,

SpaceX are working on cheaper rockets, costing about $1 million to launch.

Some other companies involved are Inspiration Mars, which is a non profit company founded by Dennis Tito the first space tourist. He is planning a trip for a select crew of Americans, who will travel to Mars, orbit, but not land. The plan here is to leave Earth in 2018, or failing that to try again in 2021. The estimated cost of this flyby mission is between $1 and $2 billion.

Then there is the Mars One mission, the one way trip, proposed by Dutch entrepreneur Bas Lansdorp. This is regarded by some as a ‘suicide mission’ as once people are there, there is no way home. Despite that, there were 2,782 applications to be astronauts on the trip, some of which came from Ireland, including Trinity College astrophysicist, Dr Joseph Roche. The plan is that these applicants will be whittled down six groups of four astronauts, and the first crew of four will leave Earth in 2024. Mars One plan to document the trip on a reality TV show, which they hope will provide much of the finance for the trip.

But, Space X is a serious, space exploration company founded by Elon Musk, a billionaire, playboy who has also made a success out of Tesla electric cars. He is working on developing a fleet of reusable rockets, launch vehicles and space capsules to transport humans to Mars and back again. He wants to build a self sustaining Martian city of 80,000 people, which could be a bolt hole for humanity in the event of some natural or manmade catastrophe here. The plan is to have a human step on Mars by 2026 (10 years!) and for it to be a round trip.

Musk may charge people as little as $0.5 million for a round trip to Mars.

Ireland 

There are a surprising number of researchers and companies based in Ireland doing work that can help make the mission to Mars a success.

For example, the work of Brian Caulfield, Professor of Physiotherapy at UCD, has led to the design and development of a device that can enable astronauts exercise properly so that their physical and mental health can be maintained on the long voyage to Mars. The work has been funded by the European Space Agency (ESA).

The device stimulates the large muscles of the legs to produce aerobic exercise training and muscle strengthening effects in space. This ‘Neuromuscular Electrical Muscle Stimulation Technology’ has been successfully tested by the ESA and was developed as a collaboration between UCD and researchers at the Galway based Biomedical Research Limited.

Research by Trinity College’s Mary Bourke, and Ulster University’s Derek Jackson has investigated Martian wind patterns and how they shape the giant sand dunes that can be seen on the surface of Mars – like a red Saudi Arabia.

Scientists know that Martian weather can be volatile and potentially very dangerous for a Martian landing as well as for human colonists, with huge sandstorms from time to time, for example.

The research is of potential value to NASA and others planning to go to Mars as it shows how the enormous sand dunes on mars influence the local wind speeds on the planet, and how these wind speeds, then in turn shape the sand dunes.

It is like developing a Martian wind and weather forecasting ability on Earth.

In Athlone Institute of Technology Dr Diana Cooper is working on the effects of microgravity on human physiology. The insights gained from this work could be crucial to developing methods to ensure that humans can survive long periods in space, travelling between Earth and Mars, without their bone tissue being reabsorbed back into the blood, or losing significant muscle mass.

Mathematics 

Something less obvious and immediate, but of enormous importance to the success of any space mission to Mars concerns something invented by an Irish mathematical genius in 1843. These are quaternions, which are mathematical equations, which are used to represent the relative movement of 3D objects in space, and the man that invented then was called William Rowan Hamilton.

A few years back, after the NASA curiosity rover landed on Mars, I spoke to one of the mission controllers, a man called Miguel San Martin. He told me that the incredibly precise landing of the car sized curiosity, near an area which NASA believed may show former evidence for life on Mars, was only possible because the precise navigation of curiosity was underpinned by quaternions.

So, incredibly, something invented by a Dubliner, while walking along the banks of the Royal Canal in 1843 with his wife, will be vital to ensure that any future Mars mission lands close to a pre-planned safe, and viable landing site.

Industry

There are a number of companies in Ireland who are doing work which feeds to the development of the technology required to get to Mars.

For example, A specific type of engine, called a Mars Apogee Engine is under development at Moog, Dublin, in work supported by Enterprise Ireland.

This engine is a liquid propellant engine capable of providing more thrust, with less fuel, than is possible with existing propulsion systems. The idea is that these new engines will be efficient enough to save 150kg of propellant on a Mars mission, which will make space available for other things, such as scientific instruments, which will give any Mars mission more ‘bang for its buck’.

The Curtiss-Wright Aviation and Electronic company, which has its origins all the way back to the Wright brothers, has a branch in Dublin. The people here are working on launch vehicles that can take payloads into orbit and build the Martian ‘in orbit’ infrastructure that will be required to supply and sustain human missions to Mars. This will build a supply chain if you like.

Curtiss-Wright are also developing technologies to enable the safe re-entry of spacecraft through planetary atmospheres including Mars, as well as technology that will be central to sustaining life & generating fuel for human explorers on the surface of Mars

Danny Gleeson, Chairman of the Irish Space Industry Group, said that development of human missions to Mars will take decades and that it was unlikely that the human mission  to Mars will be a single shot but rather a choreographed series of missions that build the necessary infrastructure in Earth orbit and Mars orbit & surface to sustain human missions.

“The good news is that there is a plan to get to Mars and back again and the technologies required are almost all available now,” said Danny.

Can the next JFK please step up.

Children at higher risk of obesity in ‘informal childcare’

First published in The Sunday Times (Irish Edition) 2-10-2016
better-off-in-creche

Is your cat dangerous? Microsoft aiming to ‘solve’ cancer problem; First human head transplant planned; Obesity gene & weight loss

This interview was first broadcast on the 22nd September 2016 on East Coast FM’s The Morning Show with Declan Meehan

indian-cat

Are cats a risk for to your mental and physical health, or have the risks been overblown? [Picture source: Wikipedia]

ERC-funded memory researcher returns from US to set up lab in TCD

This article was published in The Sunday Times (Ireland) on 11-09-2016

tomas-ryan

 

Irish ‘bench to bedside’ research improving health outcomes

Broadcast on 29-08-16 on Today with Sean O’Rourke

Medical Research Ireland

Medical research in Ireland, led by doctors and nurses, is discovering new ways of doing things that are improving health outcomes for sick people, and helping prevent illness arising in the first place (Source: http://www.ucd.ie)

The evidence shows that the best hospitals – the ones where patients have the best medical outcomes – are those that are most actively engaged in medical research.

This is the kind of practical hospital based research that saves people’s lives and it is often led by doctors or nurses seeking better ways of doing things, with no commercial motivation.

People at the frontline may have an idea of how a tried and tested way of doing things with certain patients can be improved upon. Then trials or tests are setup to test the new idea.

If the idea works, and an improvement in patient medical outcomes is proven, then changes are made in medical practice to ensure that patients fully benefit from the new knowledge.

It is called ‘bench to bedside’ research where doctors or nurses use science to test out their ideas, and if they work, then the new ways are translated from lab bench to patient bedside.

Evidence

The evidence shows, from decades of work all around the world, that hospitals are safer and generally better where the doctors, nurses and medical professionals are ‘research active’.

Medical practice doesn’t stand still, or it shouldn’t, and there are always ways of making improvements in patient care. Sometimes there is a big leap forward, with a dramatic new advance, while lots of other times, it’s a case of steady, gradual incremental gains.

The important thing is that medical professionals are in a mindset where they are constantly challenging how they do things, and never believe that existing methods can’t be improved.

The research that we are talking about here could be as simple as a better, or more, timely way of delivering a medicine, or a radical new method of performing difficult surgery.

One of the great advantages that hospital researchers have over laboratory scientists is that they can carry out tests and trials on humans, who have agreed to take part in such trials.

The individual patient can be asked to sign up for a ‘clinical trial’ to advance the state of knowledge in a particular field, such as cancer research or cardiovascular disease.

Taking part in such trials offers patients, sometimes very sick patients, the chance to help their fellow man (and woman) that come behind them, who may have the same illness.

But, as well as helping to improve the prognosis for future patients, there is plenty of evidence that an individual has a long to personally gain by taking part in a clinical trial.

The evidence suggests that people on clinical trials in hospitals have better long-term health outcomes that those that aren’t, and have earlier access to new drugs and treatments.

The people on clinical trials are watched very closely by medical staff, and they get the very best of care and attention, so that any issues that arise are picked up quickly and addressed.

There are more and more clinical trials taking place in Irish hospitals and this is a very good thing for our patients there, young or old, as the more trials, the better the health outcomes.

Ireland

All of the major Irish hospitals have significant research programmes going on at this stage, and many people will have been offered the opportunity to take part in a clinical trial.

It was long recognised that Ireland needed to be done more hospital based research, and in 2006 the Irish Clinical Research Infrastructure Network was setup to facilitate this.

Clinical trials, and studies are best done across a number of hospitals, at home and abroad, to increase the numbers that take part, and make the results more meaningful. The Network is now supported by the Health Research Board, the HRB, and the HSE.

There is also a lot more paediatric research taking place in Irish paediatric hospitals such as Our Lady’s Children’s Hospital Crumlin, and around the country, than ever before.

There is also a paediatric research network being set up between medical researchers at Irish paediatric hospitals, and this is very good news for sick children in Ireland.

Generally speaking then, there is a lot more hospital based research taking place in Ireland than there was say, 20 years ago, but we have a long way to go to catch up with the best.

Investigator led

Many people may have the impression that a lot of research done in hospitals is being by pharmaceutical companies who want to test our new drugs and products on patients.

That kind of industry led research does happen, and, in fairness, it can occasionally lead to the development of a wonderful new drug, or to the different use of an already existing drug.

However, the kind of research that is having a more sustained impact on patients’ health is the type of research that is called ‘investigator led’ research with no commercial motivation.

The genesis of this type of research is a doctor, or nurse, physiotherapist, spotting a potentially better way of doing things in their daily work, and setting up a trial to test this out.

This requires a culture to be established in Irish hospitals, where new ideas, or ways of doing things are encouraged, and they don’t always have to come from the consultant.

The important point is that it is not the pharmaceutical industry calling the shots here, it is the medical professionals on the ground, who have no axe to grind but trying to help patients.

The one issue that we have in Ireland, however, compared to the leaders in hospital research is that not enough time is freed up for consultants and others do do research.

In the US, clinical researchers might spend half their time working with patients and the rest of the time doing research. That kind of freedom is not the norm, here in Ireland.

Projects

I visited the UCD Clinical Research Centre last week to talk to some medical researchers about their work. This is just one of many research centres attached to Irish hospitals.

Dr Alistair Nichol, a consultant anesthestist told me about a research project called TRANSFUSE. The goal here is to test out whether using new blood to transfuse patients leads to better outcomes than older blood.

Irish blood products can be 35 to 42 days old by the time they are used for a transfusion, and there is some evidence emerging that ‘using fresh blood is better.

Dr Nichol is testing this out in a study on 5,000 people that receive fresh blood against blood that is ‘standard’ (older). They have gone through 4,000 patients so far.

They plan to publish the results in about one year, and whether the fresh blood is found to be better, or not, the information that is obtained from this trial will change clinical practice.

Dr Nichol is also involved in a study that aims to get Ireland better prepared for the next major flu outbreak, as we weren’t ready for the H1N9 outbreak in 2009 he said.

The idea is to be ready to move fast when the next major flu outbreak happens here, and we are due one he said, by having everything in place to capture information on the flu.

The idea is that the doctors, nurses, and paperwork are all in place so that when people come in with a dangerous flu that UCD is ready to start a trial to capture information on it.

UCD is linked with researchers in Australia and New Zealand, in this major effort to prepare for the next flu outbreak so that information on its first appearance is properly captured.

A flu pandemic hits in waves, so that when the first wave comes through Ireland, the UCD trial will capture the information needed so that it can be tackled on the second wave.

Diabetes 

I also met Professor Carel Le Roux, a South African doctor and researcher now based in Ireland who is doing important work on obesity and diabetes.

The work of Professor Le Roux, and colleagues around the world, has found that there is a gene in some people which means they are always hungry, even soon after a meal.

This genetic link to obesity shows that obesity, and related conditions such as diabetes Type 2 are not due to some moral weakness, but due to measurable genetic differences.

This finding means that for some, it may be better for doctors to try and maintain people’s health at their current weight, as trying to get big weight reductions might not be effective.

It also means that for some, said Prof Le Roux, the best option may be to have gastric bypass surgery, which is a proven method of reducing people’s appetite in the long run.

Children

There is also important research into children’s diseases – paediatric research – happening in Ireland, in areas such as leukaemia, eczema, controlling pain and childhood diabetes.

What Irish paediatric researchers are doing is identifying the very earliest signs of diabetes, or allergies, for example, and this means treatment can also begin much earlier.

The goal in the future is to be able to identify children or infants that are at risk from a condition, or that have a condition, even in the womb and then prevent or treat it.

This preventive approach to medicine which is investigator led is far different from a world where the pharmaceutical industry wants to simply test drugs and products on already sick people.

Why diesel cars are bad for our health

Broadcast on Today with Sean O’Rourke [24-08-2016]

Diesel Smoke

Tiny particles of soot pollution from diesel cars and vehicles have been linked with cancer and life-threatening lung diseases (source: http://www.dpfcleaningservices.co.uk)

Tax incentives for those buying diesel cars over the last decade has fueled a move to diesel on Irish roads, with diesel cars now outnumbering petrol cars.

This has been widely regarded as a welcome move, as diesel cars are considered ‘better for the environment’ because they produce less carbon dioxide gases than petrol cars – the gases that have been linked with causing global warming.

However, scientific evidence is emerging which shows that the level of diesel particulates, which are damaging to human health, has increased in line with the growing popularity of diesel and that Irish people are dying as a result of this. The European Environment Agency has, for example, estimated that 1,200 people in Ireland per year are dying as a result of diseases caused by particulate pollution.

Research

Until relatively recently, there has not been a significant amount of research into the impact of diesel pollution on public health, particularly in Europe, but the Volkswagen diesel emissions scandal certainly gave it an added push.

The evidence that is emerging from the US primarily – where research has been going on for longer – suggests that there is real reason for concern when it comes to health effects, and environmental effects, or air pollution from diesel engines. The US Environmental Protection Agency (EPA), the World Health Organisation and the UK Department of Transport have all produced reports in the last year or two which point to a real problem here.

As well as pointing to increased emissions of particulate matter (PM) and Nitrogen Dioxide gas, which are known to damage human health, the authorities in Europe and the US have started to make a direct link between an increase in numbers of people dying from respiratory diseases and cancers, and this increase in pollution.

The US EPA, who support a lot of work in this area, has led the way with publication of figures of increased numbers of premature deaths, cancers and respiratory diseases due to air pollution from diesel vehicles. There is a tangible link, a ‘smoking gun’ if you link that is linking cause and effect.

Ireland 

There has been little research into subject in Ireland until this year. In January 2016, a research project began at Trinity College Dublin, with funding from the Irish EPA, which is looking to precisely determine the amount of a certain type of damaging particulate, called PM 2.5 which is produced by diesel vehicles here.

It is a multi-disciplinary research effort, involving experts in air pollution, chemistry and transportation and will take place over 24 months. At the end of it, they say they will be able to determine precisely, using computer software modeling, how many deaths and illnesses here are caused by diesel vehicles.

One of the researchers involved, Dr Bidisha Ghosh, is a transportation expert, and said that the plan is to look at diesel particulates first, and to then to a follow up study where the impact of NO2 is measured and assessed.

Measuring 

The Irish EPA has a number of monitoring sites around Ireland that will be used as measuring points. One of the key challenges – and this is the first time anyone in the world has done this – will be to distinguish the percentage of PM 2.5 (particulate matter 2.5, a size of particulate) that is from diesel cars as opposed to other potential sources, such as sand, or the burning of coal.

The measuring sites will be near to roads as that is where diesel fumes are strongest, and another part of the study will determine how quickly dangerous diesel pollution dissipates as you move away from a busy road.

The researchers will be looking closely at what comes out of the diesel particulate filters that are attached to diesel cars. This is in order to get the chemical composition, or signature of PMs to better identify those PMs that are from diesel cars or other diesel vehicles. This is a difficult task and will involve using specialised machines to look at tiny quantities of polluting chemicals.

Dr Ghosh said that by the end of their project, in the latter part of 2017 they will be in a position to give precise numbers on the health effects of the growing use of diesel cars in Ireland. At that stage, she said they will have precise numbers on how many extra deaths, or premature deaths are being caused or what kind of extra number of lung cancers and other respiratory diseases are happening in Ireland due to us driving more diesel cars.

The calculations are based on knowledge of the car fleet, the type and age of cars on Irish roads, and knowledge of what the standard pollution emission from a certain vehicle of a certain age will be. This makes it possible to do comparison such as comparing the 2000 level of emissions versus the 2015 levels and matching the increase in pollution with the increase in deaths and diseases.

The project will also make it possible to predict, based on a number of scenarios – such as increasing use of diesel cars at the current rate – what Ireland can expect in 2020 or 2030 in terms of death rates from air pollution. This, it is hoped, will produce a solid basis for policy makers to address this problem.

Diesel cars 

The new new diesel cars on the market have very good particle filters and if you are sitting inside one of these cars you wouldn’t get a whole lot of this PM pollution, and the newer models may not pollute the atmosphere that much. The old diesels is where the big problem lies, and there are still a lot of old diesel cars being driven on Irish roads today, as they have vastly inferior emissions control technology to more modern cars.

It is also true that the bigger diesel car engines are far more polluting. The researchers at TCD, who have access to pollution figures in Ireland between 2010 and 2015 said there was a very significant increase in diesel PMs in those years, and this finding was what prompted a more detailed air pollution study.

The researchers also strongly suspect that the VW scandal wasn’t just a VW issue, and that many other diesel car makers have been cooking the books, in the sense that the emissions reported in the car manual does not bear much resemblance to the real on road emissions. The real figures, I was told, are likely to be far, far higher than what we see in the new diesel car manuals.

Supports

The Irish government started to actively support diesel from 20o8, with various tax incentives, in order to help Ireland meet its carbon dioxide ‘greenhouse gas’ targets. In fairness to the Irish government back then, the extent of the public health risk from diesel cars was not widely known.

It was initially thought that certain types of PMs were not harmful, but that thinking has changed, and now scientists are looking at the damage caused by diesel particulates that can remain wedged in the lungs. For example, the particulate, PM 1, is very hard to remove from the lung once in.

The evidence that is now emerging, however, is that not only is diesel bad for public health, it is also, by producing NO2, bad for the environment.

The science around this is all still quite new, and emerging. It is only in 2015 that a report was published by the UK authorities which stated that NO2 can also be very harmful to children, their respiratory development, their lung development and that it can cause irreversible changes.

The initial findings about the problem with diesel took time to emerge, as they didn’t perhaps fit with the green image of diesel, especially in Europe. However, the more research on this that is being done, the clearly the scientific picture becomes, and eventually, governments will have to act on the results.

NO2 

Nitrous oxide, and nitrous dioxide gases from diesel cars and vehicles are also linked with health problems, and the data can be collected again by using standard emissions and examining the national car fleet. This is likely to be supported by specific EPA funded research in future, which will, like the TCD project looking at PMs, look into NO2 levels at certain EPA monitoring sites, near busy roads around the country.

Aside from being linked with respiratory disease and death, NO2 is known to have a negative impact on vegetation and acts to break down the ozone layer.

Alternatives? 

There are emerging fuels out there, such as hydrogen gas, which is being made available at existing petrol stations in the UK this summer.

However, experts believe that because the infrastructure and global distribution network is built for diesel and petrol cars, and that huge investment has been made in this system, that it will be impossible to envisage a change to any other fuel or transport type in the near, or even distant future.

Electric cars are still rare in Ireland despite significant government support, as people don’t like some of the unanswered questions that remain on it, such as how long does an electric car last, and what to do should a battery die out?

There is also the fact that a very high amount of energy can be liberated from diesel or petrol, and there is nothing that can rival petroleum on that score.

The solution, some suggest, is to truly move towards a sustainable transport system, where people walk if they can, and only use a car when they have to. Those countries that do this, and that promote public transport have far less emissions from petroleum car engines. It is also very important to think about where we locate our busy roads, as studies have shown that irreversible damage can be done to schoolchildren from air pollution in schools near such roads.

For those that need a car, the advice is to look at getting rid of the old diesel and replacing it with a new one, with better a particulate filter. Also, to avoid buying one of the high performance diesel cars and go for a more modest option.

There is also the issue in Ireland of people removing diesel particulate filters when they start to affect car performance. They can be expensive to replace, and some garages in Ireland are openly offering services on the internet to remove and not replace the filters.

 

A diesel car can run without a filter, and not replacing a malfunctioning filter can save hundreds if not a few thousand euros. However, from a public health and environmental perspective removing a filter is “disastrous, really, really bad” according to Dr Ghosh.

Actively preventing the removal of diesel particulate filters from diesel cars, and insisting on a high standard of operation of diesel filters as part of the NCT test, might be how the Irish government might start trying to tackle this important public health issue.

 

%d bloggers like this: