Archive for the ‘Engineering’ Category

Charles Parsons – faster sea travel faster and electricity for the masses

O

Irish scientists, episode 3: Charles Parsons, inventor of the steam turbine engine was first broadcast on East Coast FM on 26th November 2016

turbinia

Charles Parsons’ Turbinia yacht, pictured here, outpaced the assembled British navy at Spithead in 1897 with its steam powered turbine engine (Source: Wikimedia Commons)

Charles Parsons is considered to be in the top five of Britain’s greatest engineers of all time, by virtue of his enormous contribution to sea travel, and the shipbuilding industry, and making electricity available to the masses.

Parsons’s huge impact on the world has been far less heralded in Ireland, his native land. Hew grew up and spent his  early adult years at his family’s residence in Birr Castle Co. Offaly before moving to England.

The greatest achievement of his stellar engineering career was the invention of the steam turbine engine in 1884, an entirely new type of engine, which extracted thermal energy from pressurised steam in an ultra-efficient manner.

This thermal energy could be converted, through a series of intermediary steps, into electrical energy in such an efficient manner that, it became possible, for the first time, to generate enough electrical energy to make it available to the wide mass of people, not just the well-to-do elite.

Today, 90% of the electricity in the USA is still generated through steam turbine engines.

This engine also transformed the nature of sea travel, as steam turbines could provide the power necessary for large ships to cross the Atlantic far quicker, and for passengers to travel in comfort without rattling, shaking and noise.

The steam turbine was famously put into Parsons’s yacht, the Turbinia, and used to outpace the assembled British naval fleet at Queen Victoria’s Diamond Jubilee Fleet Review at Spithead in 1897.

After this unsolicited, but powerful demonstration of the power that a steam turbine could provide, the British navy decided that it would commission the turbine to be used in its new generation of battleships, the Dreadnoughts (launched in 1906)

This helped to provide Britain with an edge in its naval arms race with Germany in the run up to World War 1.

Does bionics ultimately threaten our humanity?

First broadcast on Today with Sean O’Rourke, RTE Radio 1 (7-11-2016)

woman-with-bionic-arm

A woman with a ‘bionic’ arm. Science fiction is becoming science fact. (Image credit: Telegraph, UK)

Being human means our bodies, tissues and organs, will eventually deteriorate and malfunction. However, advances in medical science mean we can replace aging or diseased hips, knees, even hearts with advanced man-made materials. Many of our bodies, in this way, have become partly artificial or synthetic.

Advances in medical science and engineering mean that a lot more of us, in the developed western world at least, are set to have all manner of misfiring tissues and organs, maybe even our brains, replaced by something synthetic, better, and perhaps an awful lot better. The age of truly bionic man and woman is upon us.

History

The replacement of body parts with something man-made – what we now call bionics – is something that goes back a long way in human history.

Back as far as 1,500 BC there is a report of an Ancient egyptian mummy having its toe amputated and replaced by a prosthetic made of wood and leather. This was done apparently because the Egyptians felt that amputees would be cursed in life as well as the afterlife.

During the middle ages, crude prosthetic limbs ere available, but only to the very wealthy. These were made of wood, leather and metal, and the replacement leg would resemble a peg leg, with a hook replacing a hand.

Towards the end of the 18th century, in about 1897 the scientist Alessandro Volta – he of electricity fame – found that hearing could be restored by the use of electrical stimulation. This was a big advance in medical bionics.

However, it wasn’t until the mid 1970s that bionics entered the popular consciousness with the arrival of the Six Million Dollar Man and the Bionic Woman on our television screens.

The bionic man, played by Lee Majors, was human, had a bionic left eye, bionic legs, and a bionic right arm, while the Bionic Woman, played by Lindsay Wagner, had similar bionic limbs, but also had a bionic ear.

Science fiction becomes fact

What was science fiction then is now fact. A bionic eye, and ear have already been built, providing people with something even better than the original, while there have been remarkable advances in bionic limbs, including the human hand.

We could today, build a Bionic Man and Woman, with bionic ears, eyes, and limbs (not necessarily with the ability to run at 60 mph, but it could be done if felt necessary), but science is moving beyond what was speculation in the 1970s.

Neuroscientists have begun to decode the language of the brain, so that it is possible to know what word or series of words they are thinking. This is important because it means that people who are disabled, or paralysed can be now trained to move robotic limbs, or a new limb attached to their bodies.

Bionics and neuroscience is, thus, liberating disabled people from their physical dependence on people around them, and they can control their artificial limbs, or wheelchairs by simply thinking. At the same time, materials are becoming more sophisticated, and these can enhance malfunctioning biological tissues.

Bionic eyes, which pick up signals from the environment and transmit electrical impulses straight to the brain will soon help the blind ‘see’ again. A Bionic ear has been developed which restores hearing to the profoundly deaf via an implant which receives and transmits signals in the inner ear.

A bionic hand, with tremendous dexterity has been developed for a Danish man, which has been integrated by neurosurgeons with his existing nervous system. Bionic feet and legs under the thought control of the brain have been developed. A fully artificial heart has been successfully implanted, and there even moves to build an electronic implant to replace malfunctioing parts of the brain, or to construct a fully artificial brain based on the biological brain.

What this all means is that we are seeing a general trend towards humans becoming more artificial, as we live longer, and want to maintain the functioning of our limbs, organs and brain for as long as possible.

What do people want in life? They want to alive at the age of 90, but still active and healthy, physically and mentally. Bionics offers this, and its alluring.

No one knows where this all will end, or how artificial we will eventually become. Some believe that the trend towards having more and more bionic body parts threatens our humanity. How far can we go towards becoming artificial before we stop being human? It is a huge philosophical question we’ll face in future.

Irish research

The majority of the work in Ireland in this area is on the repair of body parts, through what is called regenerative medicine, rather than bionics, which involves the complete replacement of a tissue or organ, with something new and artificial.

Bionics, and regenerative medicine are moving ahead together and in parallel. It is perhaps a bit like the car industry.

There will always be a market for a brand new cars. Some people will buy a new car because they can afford it, and they want the latest technology and performance capabilities.

Others might want a new car because they have crashed their old one, and is beyond repair. However, there are also people who do not feel the need for a new car, and are quite happy to have their old car service, fixed, and on the road for as long as possible.

Ireland, in this sense, is more in the service and repair market, than the new car sales market, but both are equally important areas.

In terms of bionics, researchers in the University of Limerick, led by Dr Leonard O’Sullivan, along with an industrial partner, MTD Precision Engineering (Cork) are aiming to develop a full body Bionic Suit to help the elderly.

The Axo Suit project aims to help the aging live independently and stay mobile. The suit needs to be light enough to allow them to do daily tasks, such as going for a walk, or putting clothes on the line, but strong enough to give support.

The goal is to produce an ‘exoskeleton’ or bionic suit, which will sell for between 5k and 10k. This could keep many people out of nursing homes.

AT TCD, the Advanced Materials and Bioengineering Research Group (AMBER) led by Professor Danny Kelly’s group is involved in developing 3D bio-printing of tissues and organs, which could negate the need for organ transplants.

It could also lead to printing of organs or tissues made up of a combination of natural and artificial components, or even totally artificial components. There has already been a successful transplant of an artificial heart, and with natural organs hard to come by, this trend is set to increase.

Also at TCD, Dr Mark Ahearne’s group are developing bioengineered corneas which can be used for cornea transplants to restore sight or relieve pain. The artificial cornea has been made by using artificial fibres that mimic the ability of natural collagen fibres in the cornea to allow light to penetrate through. The researchers believe this will help people suffering from corneal blindness.

Meanwhile, At the Regenerative Medicine Institute at NUI Galway, or REMEDI there is a clinical trial underway where stem cells are being used to tackle osteoarthritis. The idea here is to insert stem cells into, for example knee joints damaged by arthritis to facilitate the growth of new, healthy bone tissue.

The potential for knee repair is incredible. For example, Professor Fergal O’Brien,  based at the Royal College of Surgeons in Ireland and AMBER, developed a new material which repaired the severely damaged knee joints of a competitive show jumping horse called Beyonce. The horse was facing euthanasia, but after the material was used, it began competitive show jumping again.

REMEDI researchers are also working with colleagues our Lady’s Hospital for Sick Children, to use stem cells to overcome congenital heart defects in children. In terms of organ repair, or fixing the sky is now the limit.

Is humanity threatened?

Bionics and regenerative medicine are set to help millions of people around the world who are suffering the effects of diseased or damaged tissues or organs. We are living longer, and this technology will help us live better, no doubt.

But, there are some issues, or concerns. For example, some well known scientists in the field, such as Hugh Herr at MIT, believe that synthetic materials such as titanium and silicon will one day replace flesh and blood.

Do we want that? Will this spell the end of humanity, at our own hand?

Herr got caught in a snow blizzard while climbing a mountain at the age of 17, and lost both legs to severe frostbite. Now in his 50s, he is the co-director of MIT’s Center for Extreme Bionics, where he is designing artificial legs (including his own) feet, ankles, knees and hips.

Herr’s view is that we will become more artificial, and eventually totally artificial, but that we will retain our humanity. We already have ‘augmented’ abilities, such as the ability to fly, and devices that improve our memory and ability to communicate.

Herr believes that our humanity, our ideas, our personalities, and our creativity, will become ‘embedded’ into artificial ‘designable’ bodies. We will come to see this as normal in the way, he says, and that artificial legs, or body parts will be considered part of us in the same way as biological legs are now. This is all part of the natural progression, or evolution, or humanity, Herr says.

Others disagree, and argue that as we shed our biology, we will shed our humanity, and that this technology represents an existential threat to mankind.

 

 

 

John Philip Holland – inventor of the modern submarine

The first episode in a six part radio series on Irish scientists began yesterday morning on East Coast FM (7:30am), featuring John Philip Holland, inventor of the modern submarine

The series is presented by myself and written and produced by Colette Kinsella, an award winning independent radio producer with Red Hare Media.

LISTEN:

John Philip Holland, pictured below, from Liscannor Co Clare, was not afraid to test and pilot his own submarines designs for the Fenians and the US navy.

johnphilipholland

Why are electric vehicles not selling in Ireland?

Broadcast on Today with Sean O’Rourke, RTE Radio 1, 21-09-2016

tesla-model-s

The Tesla Model S electric cars which are making inroads into the luxury class car market in the USA will be available for sale in Ireland in 2017 [Picture source: http://www.mashable.com]

In 2008, the then Coalition government of FF, PDs and the Green Party, announced a target of having 200,000 electric vehicles (EVs) on Irish roads.

It was an ambitious target, yet eight years later, despite the building of infrastructure to support electric cars, and financial incentives, there are only 2,000 EVs on our roads – that’s a mere one percent of the Government’s original target.

So why is it that sales of electric cars have not taken off in Ireland, compared to some other countries and is this likely to change any time soon?

Infrastructure

The infrastructure supporting electric cars is good, and one of the most advanced in the world, so that’s not an issue.

There  are 1,400 charge points between the Republic of Ireland and Northern Ireland. These have been set up by the ESB e cars unit on an all Ireland basis. The idea is that with one electric car access card you can use any of the charger access points throughout the country – north or south.

This is a better system than in the the UK where different councils and different regions would have developed their own infrastructure, and there is no inter operability between them. The charger plugs are the same, but the driver of an electric car in Britain would need five or six different access cards to use the EV charge points around the UK.

Each charge point in Ireland has intelligence built in so that information is sent back to the ESB e car charge point management system. This system monitors the availability of chargers, whether they are currently in use or not.

If there is an issue such as a cable gets blocked the system can unblock the cable. The ESB from the start decided to install a standard electric charge point in  every town with 1,500 people or more.

The ESB have realised since that a lot more people are looking for fast chargers than had been anticipated at the start of the infrastructural roll out. There are 22kw chargers with two points in each one –  and the Renault Zoe can charge in an hour off that. Then there are the 50kw fast chargers that can charge a car up to 80% in 25 minutes. There are about 75 of these, and one every 50 km of motorway on the main roads.

The idea is that if you leave your house in Dublin heading for Galway and you drive with a full tank, you can stop, get a fast charge and keep going. Most of the in car Sat Navs on cars are linked into the latest information on the nationwide network of charge points which is constantly updated by ESB e cars.

The ESB has a 24-hour call centre in Cork, and there are maintenance teams, response units if anyone breaks down. The charge points can all be operated remotely now – one card for all of Ireland – and in the near future the plan is to have an app that lets you know not just where the nearest charge points on, but whether it is currently in use.

Turnoffs

The three main turnoffs people cite when it comes to their reluctance to buy EVs come under three headings: performance, range and cost.

There is an idea out there that EVs are slow and cumbersome, like the old milk floats we saw around Dublin in the 1980s, but, I know, from driving a Nissan Leaf, that this is not the case. The performance of the car is excellent, and there is more than enough zip and acceleration to make electric cars ideal around the city.

You could put somebody into the smallest electric vehicle up beside a Ferrari at a traffic lights and the electric car will get away quicker. The high powered Ferrari will catch him after couple of seconds but there is great zip  in an electric car, and overtaking is no problem.

The  latest Model S Tesla electric cars can go from 0-100 in 2.6 seconds if you put a Tesla car onto its so called ‘ludicrous’ mode; better than the most powerful Ferrari with an IC engine.

People are concerned about range, and, while surveys of electric car users show that range issues are manageable, it is still an issue for potential buyers.

The industry experts believe that maximum range, which is around 150 or 160km for many electric cars needs to reach 300 or 400 km before ‘range anxiety’ is no longer an issue. That could happen as early as 2018, the experts tell me.

The range of the current Nissan Leaf, which I drove myself a few weeks ago, is between 160 and 165 km after a full charge at home. The home charge points, which are installed for free by the ESB currently for anyone purchasing an electric vehicle, are 16amp, single phase chargers.

A full charge is, however, not enough to get the car from Dublin to Galway (208 km) so anyone planning that trip, must plan to stop at a motorway charge point for about 20 minutes to get a ‘top up’ charge.  

For range to improve the existing battery technology must be improved. There has been huge investment in this area, in laboratories around the world, particularly in Japan, Korea and the US, but even a little here in Ireland.

The flamboyant US-based science entrepreneur, Elon Musk, who is the Chief Executive Officer of Tesla Motors, a hugely innovative and dynamic electric car company, is building what he calls a battery ‘gigafactory’ in Arizona. This is due to go into full production in 2020 when it will produce enough lithium-ion batteries, like the ones in our smartphones, to power 500,000 new electric cars per year. All the raw materials required will be brought to Arizona, and when this factor opens it will double the world’s output of lithium ion batteries.

This will provide some of the economies of scale that have been lacking in the electric car industry up to now, and it should be a ‘game changer’. The electric car is more expensive to build than a ‘normal’ car, even without the battery taken into account, because of this issue of economies of scale.

The average car has about 2,000 moving parts, while the average electric has something like 200. The electric car should be cheaper to manufacture!

The prediction is that somewhere between 2020 and 2025, after Musk’s gigafactory opens, the costs of batteries will go down, and the economies of scale for electric will improve so that there will be cost parity.

That is, for the first time, an electric car will cost the same as a car based on the internal combustion engine. This will be a historic moment for e cars.

In summary then, performance is not an issue, and anyone that gets into a modern electric car will quickly realise that. Range is still an issue for some people, but from 2018, it is expected that electric cars with a range of 400 km will be here, so that issue will disappear.

Cost will remain an issue, until cost parity is reached somewhere between 2020 and 2025. In terms of running costs, the electric car is already far ahead of cars powered by the internal combustion engine.

Many people charge their electric car overnight and, at nighttime rates, the cost works out to be between 10 and 15% of the cost of petrol.  Even when people charge at the daytime rate for electricity, it works out to be about 25% of the cost of petrol.

It costs less than €5 to run an electric car for 100 miles. The cost to run the car for 17,000 miles per annum (average mileage for residential car use in Ireland) will thus, be less than €850.

Authorities

There have been difficulties with some local authorities in terms of having the road marked as an e car space reserved for electric vehicle charging. At the moment someone could find a petrol car parked at the e charging location and there is little that can be done about it, unless the local authority has agreed to mark the space as a space set out for electric car charging only – making it an offence for any other car to park there. Some local authorities have done this, others haven’t. Dun Laoghaire has gone further and offered electric cars free parking for up to four hours.

The ESB is trying to sort out all the questions around people booking charging spaces in advance. These are free, so, if electric sales pick up they are likely to become very busy. There are outstanding questions such as how long in advance should people be permitted to book a space? What should the ESB charge for a booking? What happens if someone books and doesn’t show up? What if someone hooks their car up to a charge point, and goes off to dinner, only returning several hours later, or the next morning, blocking up the space for others?

Comparisons

London is one of the leading cities in the world, when it comes to supporting electric vehicles, and certainly Dublin and other Irish cities and towns could learn a lot about what is going on there, and the picture is changing fast.

London is looking to introduce an ultra low emission zone in central London from 2020. This will be in addition to the congestion charge. There is a £10 charge to drive into central London as things stand, and if you are driving a pre-2015 diesel or a pre-2006 petrol car there is another £10 added on top of that. This is to try and reduce congestion and to improve air quality, primarily.  

The London taxi company has been bought out by Geely, a Chinese electric vehicle company, who have built a new factory in Coventry. Geely have invested £300 million on that factory, and this will churn out new London taxis, which will all be plug in ‘hybrids’ – or mixtures of conventional internal combustion engine and electric.

In the UK as a whole there are now 70,000 electric vehicles on the road which is far ahead of where we are, at 2,000 in Ireland, even accounting for the population difference.

The new Mayor of London, Sadiq Khan, is talking about extending the low emission zone beyond central London, while the central government at Westminster has allocated £600 million to incentivise the purchase of EVs, build infrastructure and support pilot projects, such as electric bus schemes. There are grants available for the manufacturers and purchasers of EVs and an Office of Low Emission Vehicles, or OLEV, has been set up under the control of the UK’s Department of Transport.

Meanwhile, in Norway 25% of all new car sales are now electric. The Norwegians are proposing to ban conventional vehicle sales in 2025. The proposal is that from 2025 on, cars powered by an internal combustion engine using petrol or diesel will no longer be permitted to be sold. This is extraordinary for a nation that has built its wealth on oil reserves in the North Sea, and shows that the days of the internal combustion engine are numbered at least here in Europe.

There have been 25,000 electric vehicles sold in Norway so far this year. It is the transport department that has proposed to the Government that the new policy to be announced in the Spring. The report to the Government, which is being discussed in the Norwegian parliament at the moment has recommended that there be a ban on IC vehicle sales from 2025. It hasn’t been decided yet, however.

Supports

There is a grant which takes €5,000 off the initial purchase price of the electric car, and VRT relief up to €5,000. The ESB provides  free home charge point with the purchase of an EV as well, as well as free public charging (public) and a 24 hour backup call centre should problems arise.

But, clearly these measures have not enough to encourage a higher level of electric vehicle purchases in Ireland and more needs to be done if EVs are to move out of the niche market situation here.

The car market has recovered and we are on target for 155,000 cars to be sold this year, which is still down on the 2008 figure of 187,000.

The market, which survived a near death experience, is probably secure enough to look at new technology like electric again, so that’s positive.

A revised target for EVs in Ireland of 50,000 has been mentioned in the National Energy Efficiency programme, but that, experts believe, will not be reached with the current level of incentives for EVs. More is needed.

Ireland could perhaps look at the US where there are 400,000 EVs on the road. The US gives a Federal tax credit of $7,500 per electric car purchased. On top of that certain states add their own incentives. For example, California gives an additional $2,500 grant, while Colorado gives a tax credit of $6,000.

The US moves seem to be working, in some places at least. For example, 6% of new car sales in San Francisco are now EVs.

Some believe that giving executives incentives to buy electric cars here by reducing their Benefit in Kind is something that might kick start things.

Executives in the US are buying the latest Tesla Model S, which is outselling BMW and Mercedes in that luxury class in California.

These executives buy a new car every three years, and are helping to generate a second hand market for electric cars there too.

Future

The Tesla Model S is outselling BMW, and Mercedes in that luxury class in California. This has grabbed the attention of the German car companies. Berlin has been resisting the tightening of regulations in Brussels on the car industry, particularly on non greenhouse gas causing CO2 emissions.

However, they won’t be able to hold the line forever, as more cities and countries move to improve air quality for its urban citizens. The situation where diesel cars are pumping carcinogenic substances into the air, and risking the health of children in particularly, can’t continue. The car companies have woken up to this, and they are all working on hybrids if not full electric vehicles in anticipation of what is to come.

The big picture, however, is even more threatening for the existing car companies, as driverless technology begins to become reality. The Mercedes E class in its latest ads in Ireland talks of a move towards the autonomous, or driverless car

The Tesla Model S already has all the technology it requires to be driverless and in a test on the Stillorgan dual carriageway it changed lanes without a hitch. The vision of the future is that the transport needs of society is built around a fleet of driverless electric cars, which can be called on demand by phone apps.

This will reduce the need for car ownership, and provide disabled, elderly or children with the means to safely call for a car to get from A to B. The huge amount of space in our cities given over to parking can be used for something else, noise will be eliminated, and air quality vastly improved.

Silicon chip could be replaced by material made in Cork

Siliconchip_by_shapeshifter

Silicon chips, like the one pictured here, could in future be made not from silicon, but from a new alloy material made by a UCC research group (Source: Wiki)

The silicon chip — the tiny synthetic “brain” inside smartphones, laptops and electronic devices — could eventually be replaced by a material made in Cork.The substance, a mixture of tin and germanium, should allow faster, less power-sapping electronic devices. In the short term it could be used to make “wearable” solar cells to power phones or tablets.

The innovation has been announced by Professor Justin Holmes, a scientific investigator at the Advanced Materials and BioEngineering Research Centre and professor of nanochemistry at University College Cork.

The tin-germanium mixture has been used by Holmes and his team to make tiny electricity-conducting wires, called nanowires. These control the electrical flow in devices, as silicon does, but use less power.

Low-power electronics could mean that mobile phones need to be charged less often, Holmes said, and could open the way for solar-powered mobile phones.

“Improved power efficiency means increased battery life for mobile devices, which ultimately leads to lower greenhouse gas emissions,” he said. “The charging of mobile electronic devices currently accounts for 15% of all household electricity consumption.”

This research has been funded jointly by Science Foundation Ireland, a government body that uses public money to support research, and IQE, a British company that produces materials for mobile phones and other electronic products.
The creation could challenge the dominance of silicon chips. Silicon, a component of sand, is a cheap and abundant material. Because of its ubiquity and its power to control electricity, it was used in the first chip made at the Texas Instruments lab in 1958.
As computers’ processing speeds have increased, manufacturers have packed more transistors onto every chip. Intel’s 4004 chip, made in 1971, had 2,300 transistors, while a chip the company makes now has 7.2bn.

The technical problem with having billions of transistors in a single silicon switch is that the amount of heat generated has shortened battery life and can lead to overheating.

This prompted scientists including Holmes to look at different materials that could be used in chips. IQE said it hopes the Irish-made material will make silicon chips faster and reduce their power consumption.

“The ability to increase the speed and number of devices on a chip by reducing size is coming to an end. Novel ideas such as nanowires will allow the microelectronics revolution to continue,” it said.

 This article was first published by The Sunday Times (Irish edition) on 21/08/2016.  Click here to view.

 

 

An ‘under the hood’ look at Dublin’s First ‘waste-to-energy’ plant

Covanta Incinerator

The Dublin ‘waste-to-energy’/incinerator plant – as it will look when completed – that will be taking household waste from waste operators in the Dublin region from September 2017LISTEN

LISTEN

This discussion about the science and technology underpinning the plant was broadcast on Today with Sean O’Rourke on (08/08/16)

Dubliners and visitors to the city in recent months may have noticed a huge addition being made to the skyline with a large structure under construction next to the two iconic chimney stacks at the Poolbeg ESB Station at Ringsend.

This is Dublin’s first ‘waste to energy’ plant, which its opponents, and there are many, would prefer to call an incinerator. According to its operators, Covanta, it will be capable of handling 600,000 tonnes of black bin waste, the vast majority of which will come from the city and the three Dublin county council areas

The plant will begin operating here in September 2017. Covanta state that it will convert waste from the city’s black bins – most of which would otherwise end up in landfill – into electricity for the grid and reduce our reliance on fossil fuels.

I went along to the plant last week (4/08/16) to see how the construction phase is progressing, and to have a look at some of the engineering and science that will underpin the plant’s operation.

Controversial

The Dublin waste to energy plant, or incinerator, is a highly contentious project. The story dates back to the late 1990s when the plan for an ‘incinerator’ or ‘waste to energy plant – the name depends on your view on it – was first mooted.

At that stage it had become obvious that Ireland needed to be able to tackle its own waste, rather than simply putting it into landfill, or exporting it.

In 2005 Dublin City Council awarded the contract for the plant to a Danish company called Elsam. Elsam was subsequently bought out by DONG energy generation, another Danish company. In 2007 the City Council sent a letter agreeing to engage DONG and Covanta Energy, a US company, to design build operate a Dublin waste to energy plant as a joint venture.

The EPA gave the plant a licence in 2008 and after the Commission for Energy Regulation gave authorizations to allow the plant to generate and supply energy (via electricity) in September 2009 there was a green light to start building.

It didn’t happen, and construction was suspended because the companies were unable to obtain a foreshore license to allow a development to take place on the coastline. The Minister for the Environment at the time, John Gormley, was opposed to granting the license and represented the local Dublin 4 area.

Finally, the license was granted, and Covanta re-commenced construction in 2014. There is significant progress now at the site, with the main structures in place, and it will began to accept waste from the local area in September 2017.

Operator

Covanta, is US based, but has built many ‘waste to energy’ plants on this side of the Atlantic and is looking to expand further into Europe. The firm has about 30 years of experience operating 45 ‘waste to energy’ facilities around the world.

Covanta like to think of themselves as being in the recycling business because they recycle about 500,000 of metals from the residual bottom ash left behind after municipal waste is incinerated or burned.

The majority of Covanta plants are based in the US and the company claim that there facilities there operator up to 90% better than government standards require.

In Dublin, they have an almost exclusively Irish management team, and have been able to easily hire people with the required expertise based here, or to lure back Irish people that have worked on waste to energy plants overseas.

Construction

The Poolbeg site for the plant is currently a hive of activity, with construction workers in yellow safety jackets, and helmets everywhere to be seen, swarming over the site. There is a sense of purpose, organisation and urgency as the company are working to a tight deadline and they are determined to began accepting waste in September of next year from local waste operators as they are required to do.

There are all manner of specialist construction workers at the site, as the piece of this gigantic puzzle are put into place. It is like watching a large football stadium, or a huge cruise liner being built, and it’s fascinating to watch.

Need

Most informed observers agree that Dublin, and Ireland, has a major problem with its waste, most of which is being exported.

There is very little capacity to deal with the large amount of waste being produced in the Dublin region, and Ireland as a whole, as there are just 5 landfills operational here that accept waste, and there is little or no likelihood of new landfills being set up as they are a health risk and no-one wants them.

This has been the situation for many years now, and what Ireland has been doing is exporting its waste, both its hazardous wastes, and the ‘ordinary’ black bin household waste overseas by ship, where plants in other countries burn the waste and recover energy, and dispose of the unusable or dangerous remnants.

The EU wants member states, and regions to deal with their waste in their own area, and this is also a key part of our national and regional waste policies here. That means that Dublin must deal with its own waste in Dublin, rather than the situation where hundreds of thousands of tonnes of waste are sent to towns like Drogheda and Arklow where they are ‘bailed’ and exported by ship. This is wrong in principle and storing waste like this represent a fire and health risk too.

We currently export about 560,000 tonnes of waste from Ireland each year, and the new Covanta plant has a capacity for about 600,000 tonnes.

Recycling does not appear to be solution to our waste problems, as even if we hit the predicted recycling rate here of 45-50% by 2020 there will still be a substantial amount of waste that has to be dealt with one way or another.

The waste that we produced can, with this plant, be put to good use to produce electricity and to reduce the need to important fossil fuels, such as gas from Russia and oil from the middle east, which are burned to produce electricity.

We need it. If we don’t, then in the absence of new landfill sites, the EU could decide that Ireland is no longer permitted to export its waste on a massive scale in contradiction of EU policies, and our own national policies. The EU have been very patient with us on this issue, going back almost two decades now.

Scale

The plant is huge. Is located at the end of South Bank Road, which is off the roundabout at Ringsend as you head south onto the coast road past Sandymount for those that know Dublin. It is next to the Poolbeg Power Plant, and beside the Irish sea, the river liffey, a sewage treatment plant, and a nature reserve.

The shape of it is very distinctive, it is very sleek and modern, and reminded me of a streamlined version, without the lifeboats and all the extras, of the kind of large cruise liner that we have grown used to seeing in Dublin Port these days.

The footprint of the plant covers about 3 football pitches, and at 52 metres at its highest point, it almost identical in height to the nearby Aviva Stadium, which is 4 metres shorter.

There will be two chimney stacks, which are not yet in place. These will be 100 metres tall, and from which will emerge, the company state, mostly water vapour at the end of the waste-to-energy process. That can be compared to the existing Poolbeg stacks, which stand at 207 metres, more than twice as tall.

The design is a kind of shell-like wrap around design, and the Covanta manager said that about 100 million euro was spent on design, to make the plant better fit in with its surroundings. In my opinion they have done a pretty good job in that, as it doesn’t look like a typical dirty power plant or industrial factory site.

In terms of the materials, there will be an extraordinary amount put into the construction such as 6,000 tons of reinforcing steel, enough concrete to fill about 6,500 concrete trucks and enough vertical supporting piles to run – if all the piles were laid out on the ground – the 64km from Poolbeg to Kildare town.

Waste to energy

When the plant is up and running, it will operate 24-7, although it is not permitted to take waste on a 24 hours basis.

The waste trucks will arrive from around Dublin – the busy time is often the mornings at these plants I’m’ told – they will be weighed and checked in before they go to a tipping hall when they unload their waste in a designated ‘bay’.

The waste will be unloaded out onto the floor and then put into a huge storage pit and thoroughly mixed before being lifted with a big mechanical grabber and put into what are called ‘hoppers’, and from the hoppers the waste travels to the combustion area where it is burned.

In the combustion chamber the waste will be burned at about 2,000F and the combustion a single load of waste from a hopper takes one or two hours. As waste is burned the heat will convert water in the steel tube lined walls that rise through ‘boiler tubes’ where it is superheated.

The steam will turns a turbine driven generator to produce electricity. The electricity produced by the turbine generator is will be exported to the grid for use by homes and business in the immediate Dublin 4, south city area.

Steam from this electricity generating process will be condensed back into water and returned to the boiler tubes, giving a efficient ‘closed loop’ system.

After this process, the volume of waste, Covanta tells me, will be reduced by 90%, with mainly ash and metal remaining. The ash can be landfilled or re-used. The metal such as iron and steel are recovered for re-use.A separate process recovers other metals like aluminium and copper.

The plant has pollution control equipment to ensure, the company states, that emissions are below limits to protect human health.

The Environmental Protection Agency (EPA) can come onto the site whenever they wish, and they can access Covanta’s emission monitoring computers.

The goal, Covanta say is to have real time information on emissions available to whomever is interested on the company website when the plant is running.

In terms of air pollution, acid gases will be neutralised using lime and a scrubbing, or cleaning, process, and carbon will be injected into the gaseous mixture for better control of heavy metal emissions.

Small particulates – which can cause human health problems, particularly breathing difficulties – are removed as emissions pass through a ‘bag house’. This uses thousands of fabric filter bags to catch and hold particulates.

All gases pass through the bags before leaving the stack. The control room monitors emissions through a real time emissions monitoring system and controls steam flow and other automated processes in the plant.

In Dublin, Covanta are using the nearby Liffey water to act as a coolant in the plant, and they are capturing rainwater and surface water for the same purpose.

Potential benefits

The plant will produce 60 megawatts of electricity per year, enough to heat 80,000 homes, and to provide district (local) heating for 50,000 homes.

It makes use of ‘grey water’ from the nearby sewage treatment plant – which would otherwise require energy to be further treated – to cool the process, which is important, as temperature regulation is central to the safe and efficient operation of the plant.

Most importantly, it has the capacity to take up to 1,800 tonnes of black bin waste per day, and up to 600,000 tonnes per year.

This will greatly benefit our environment, as some of this waste may have been going to landfill, which has health and safety risks attached. It will help us to comply with the EU requirement that we deal with our own waste, and it will mean that waste is dealt with close to where it is produced in Dublin and not stored around the city, or in port towns where it can be a fire or health risk. This was caused by waste storage and it was a dangerous fire.

It should also be remembered that in many places in Europe plants like this are welcomed by ‘green’ political parties as they help move us away from landfill, and promote the idea that waste should be treated as a recoverable resource.

Caution

A note of caution was sounded when it was reported last month by The Irish Times that a Covanta run plant in Canada did not meet emissions targets on dioxins and furans as set out by the Canadian Ministry of Environment.

I asked Covanta, based on that story, how could they reassure people in Dublin that the plant there was safe and would meet emissions targets.

Covanta responded that they had measures in place in the Canadian plant to shut it down as soon as a problem arose on one of two emissions stacks. This ensured that there was no risk to the environment or health of local residents, and that this was, Covanta told me, confirmed and supported by the Canadian authorities.

Furthermore, Covanta said all emissions from the Dublin plant will be independently monitored and verified by the Environmental Protection Agency.

Statement in full (for those that are interested) below from Covanta in response to my question about the issue that arose at Canadian plant.

A stack test in May 2016 at the Canadian plant indicated that the limit for dioxins and furans were exceeded on one line. The emissions exceedance for this unit was not representative of normal operations and previous stack tests and engineering runs have demonstrated compliance. Unit 2 continues to operate without issue with dioxin emissions at only 20% of the permitted levels.

While the emissions for unit 1 exceeded the limit at the stack, ambient air monitoring results of dioxins and furans upwind and downwind of the Canadian plant were well below the air quality standards set by the local environmental regulations. Soil sampling was also done and the testing found no elevated levels of dioxin/furans. The testing regime that Covanta had in place in Canada enabled the shut-down of Unit 1 as soon as the problem arose and thus ensured there was no risk at all to either the environment or the health of local residents which was confirmed by the relevant authorities.

The Dublin plant is technically different from the Canadian plant in many ways and the Poolbeg waste-to-energy process provider has successfully delivered 29 new plants across Europe since 2000 – 10 of these in the last 5 years and without any environmental incident. In addition Dublin Waste to Energy has invested heavily in experienced management and staff for the Poolbeg plant which will ensure smooth commissioning, start-up and operations.

The emissions limit values permitted for the Dublin plant have been set out by the EPA in accordance with best practice and EU legislation. In addition, the frequency and testing regime has been set out by the EPA and all emissions (in addition to be monitored by DWtE) will be independently monitored and verified by the EPA. As an indicator of Covanta’s diligence and commitment to the monitoring of stack emissions to ensure continuous compliance to the EU requirements, the plant has a full CEMS (Continuous Emission Monitoring System) as a stand-by to the two CEMS systems which monitor the emissions from the two lines.

Japanese satellite, with Irish input, is tumbling in space

My story on the tumble taken by Japanese satellite, Hitomi, which has had significant scientific input from the Dublin Institute for Advanced Studies, from The Sunday Times last weekend.

Satellite Story

%d bloggers like this: