Archive for the ‘Controversy’ Category

The incredible story of the “immortal” Henrietta Lacks

Interview with Myles Dungan on The History Show, RTE Radio 1, 22nd January.

The Immortal life of Henrietta Lacks based on the book written by Rebecca Skloot in 2010 will appear on our cinema screens this year, with Oprah Winfrey in the role of Henrietta.

But, who was Henrietta Lacks, what was her story, why is her life described as “immortal” and how has it influenced the lives of millions of people around the world since her death in 1951?

henrietta-lacks-pic

Henrietta Lacks, pictured, died from cervical cancer in 1951, aged 31. Cancer cells removed from her body without her knowledge or permission were used to produce the polio vaccine Credit (Henrietta Lacks Foundation).

Old South

Henrietta Lacks was a poor black woman from the tobacco fields of the state of Virginia, USA, part of the old South.

She has made a huge contribution to mankind, because of the cells she unwittingly gave to the world, so called ‘HeLa cells’ which were taken from the cancer that killed her in 1951 and grown in labs around the world to combat disease, and help scientists develop techniques like cloning and I.V.F.

The cells have been used to produce a vaccine for polio, leading to its eradication in the USA and most parts of the world, but they have also been used to produce commercial revenue. Henrietta didn’t provide ‘consent’ for her cells to be used in this way, but in 1951, consent was not a requirement for doctors to remove cells or tissues from patients for research purposes.

Henrietta was born with the name Loretta Pleasant on the 1st August 1920 in Roanoke, the biggest town, but still a small-ish city, in southwestern Virginia. At some stage, for reasons not clear, she became Henrietta, a name that was shortened to ‘Hennie’ after the death of her mother.

Henrietta’s mother died when Henrietta was 4 and ‘Hennie’ and her nine siblings were sent to live with various aunts and uncles and cousins in the little farming town of Clover, Virginia.

Hennie ended up with her grandfather, who was also trying to raise one of Hennie’s first cousins – David. They lived in a two-story cabin built of hand-carved logs, and held together by pegs that was once the slave quarters of their ancestors.

In 1924 rural Virginia, black people were no longer slaves, but their social, economic and living circumstances, even the actual buildings that that lived in, hadn’t changed much since the Emancipation Proclamation was issued by President Abraham Lincoln on 1st January 1863. This executive order changed the federal legal status of some 3 million black slaves trapped in the Confederate south from ‘slave’ to ‘free’.

Slave quarters

The former slave quarters that Hennie found herself living in with her grandfather and cousin David looked over the family cemetery where Hennie’s ancestors, who were black, but some of whom were also white, including one of her great grandfathers, were buried.

All around the slave house, or ‘home house’ as its residents called it were hundreds of acres of tobacco fields. The area was, and is known as Lacks Town, as many of the people living in and around the tobacco fields were ‘kin’ to Henrietta.

Hennie had honey coloured skin, a round face, and an attractive, welcoming smile. After a time, according to cousins accounts, Hennie and David, who was called ‘Day’ became an item, even though they had been raised like a brother and sister.

Children followed. Lawrence was born in 1935, and Elsie, who was “deaf and dumb”, and ended up later in a home for the Negro Insane, was born in 1939.

In 1941, Hennie and Day got married, and made plans to get out of Clover, forget the tough life of tobacco farming, and join the many black people that were heading for Baltimore and Washington DC to get jobs in the booming wartime shipyards and steel mills.

Hennie, according to accounts, settled into her new life as housewife in a brick city apartment, but she missed the country and would often grab her kids, and pile them onto a bus for a trip back to Clover.

It seems Hennie loved being a mother, and more children came with Sonny born in 1947, and Deborah in 1949. Their fifth child, Joe, was born in 1950.

Henrietta’s illness

A few months after Joe was born Hennie shared a secret with her cousin Sadie, Sadie later recalled. She started bleeding, even though it was not her time of the month, and one morning when she was taking a bath she felt a lump.

Hennie decided to attend the outpatient centre at Johns Hopkins Hospital in Baltimore – a renowned centre for medical excellence in February 1951 and the gynaecologist on duty when Henrietta came in was Dr Howard Jones. Dr Jones examined Henrietta and found something remarkable: a glistening, smooth growth that resembled what he called “purple Jell-O” (jelly).

The growth was about the size of a US quarter, and positioned at the lower right of Henrietta’s cervix. The growth bled easily when it was touched.

Dr Jones thought it might be an infection and tested for syphilis, but the results came back negative. He ordered a biopsy and got the diagnosis: sadly for Hennie, it was cancer.

Henrietta came back for treatment 8 days later, and another doctor took another slice off her tumour. Henrietta wasn’t told about this, but, at the time, that was normal medical practice.

Capsules of radium were placed around her cervix to try and kill the cancer cells and she was released from hospital and went home. Henrietta didn’t tell anyone about her illness, and continued with home life as normal.

She came back regularly for treatment, but the cancer cells were growing faster than radium could kill them and it was difficult for her now to hide her pain.

She was admitted to hospital for the last time in August 1951, for what would be the last time. A few months later, on 4th October 1951 Henrietta died, aged 31, with an autopsy showing that she had cancerous lumps in her chest cavity, lungs, liver, kidney and right through her bladder. The cancer had been relentless, and grew and spread at a pace that proved uncontrollable.

Henrietta was buried in an unmarked grave her the ‘home house’ in Clover. Her children remember it as a day when the rain poured from the sky as though heaven were weeping for ‘Hennie’.

Family devastation

The death of Hennie was devastating to Henrietta’s family, her husband Day and their five children. This is apparent, as even all these years later they get upset talking about her death, it seems.

Her death was something of a taboo subject, and no-one was comfortable talking about it, as it affected them so deeply.

Day tried to keep the show on the road by working shifts at the shipyard, while minding his three youngest children. Elsie was now in a home for the Negro Insane and family visits were not as frequent was when Henrietta was alive, as she visited Elsie regularly. Lawrence, the eldest left to join the Army.

Two relatives moved in to live with Day and the three children, one of which was described as ‘evil’ and life became brutal and horrible, with the children being beaten for no reason and having little food to eat.

As the children grew older, they – understandably – wanted to get away as much as possible from the nightmare house in Baltimore and they regularly returned to Clover to work on tobacco, as their mum had done, keeping their abuse a secret.

Elsie died in 1955, aged just 16, and it appears that sadly she had been abused, and she may even have had holes drilled in her head for some kind of human experimentation.

When Henrietta’s children had their own children, it seems that – perhaps sensing something from their parents – they too avoided the subject of their grandmother, how she lived and how she died.

Medical legacy

Henrietta’s family knew nothing until the early 1970s when family members received phone calls from researchers asked for them to donate blood samples. The researchers said that they wanted to find out more about their mother’s genetic make-up.

Naturally, the family members wanted to know why they were interested in this, now, many years after Henrietta’s death. They were then told – and this must have been utterly shocking to them – that part of their mother, some of her cells, were still alive and growing now, more than 20 years after her death.

The Lacks family finally learned that tissue from their mother’s second biopsy in 1951 had been given to Johns Hopkins researcher Dr George Gey, who was searching for a cure to cancer, and had, towards this end, but trying – unsuccessfully – to grow human cells outside the body, so that they could be closed studied in the lab.

Dr Gey’s lab technicians got Henrietta’s cells, but – by now programmed for failure – expected them to do what many previous cell samples had done – live for a short time, a few days tops, then die. Yet, what happened astonished them. Henrietta’s cells multiplied in petri dishes, uncontrollably spreading and piling up on one another.

On the very same day that Henrietta died, 4th October 1951, Gey was appearing on a TV show called ‘Cancer Can be Conquered.” On the show he held a bottle close to the camera, and in it he said was the first human cell line ever grown. This was Henrietta’s legacy.

The cells were called “HeLa cells” by Gey, to acknowledge the first two letters of Henrietta Lacks’ first and last names. He then gave samples out to other researchers around the USA. The idea was that HeLa cells would work enough like normal cells so that doctors could test, probe and unlock their secrets and weaknesses in the lab. This new knowledge, it was hoped, would lead to a cure for cancer.

HeLa cells

The biggest impact, without doubt, that HeLa cells have, so far at least, made on the world is by helping Jonas Salk create a vaccine which has almost eradicated – worldwide – what was a crippling disease affecting children.

Salk infected HeLa cells with the poliovirus – something that could easily be achieved – and studied how they reacted. After a number of years of work, in 1955, he had created a working vaccine.

This received huge attention because polio mainly affects children under 5 years of age, so young children had been dying and the name polio was a terrifying one until Salk came along.

Polio is highly infectious. It kills when some infected children become paralysed and their breathing muscles immobilised. It is still a threat in certain parts of the world, according to the WHO, but the number of cases, worldwide have decreased from 350,000 cases in 1988 to just 74 reported cases in 2015.

It is estimated that the polio vaccine, and, thus, HeLa cells that helped created it, have saved the lives of one million people, many of them young children, around the world since 1955, who would otherwise have died of polio.

In 1952, just three years beforehand, there was a polio outbreak in the USA which killed 3,145 people, including 1,873 children. At that rate, some 192,000 Americans would have died if the polio vaccine had not been available there from 1955.

The HeLA cells were ideal for developing a polio vaccine because they could be easily infected by poliomyelitis, which caused infected cells to die. However, a large volume of HeLa cells were needed to test Salk’s vaccine, and this led to the mass production of HeLa cells from 1953 in a cell culture ‘factory’ at Tuskegee University.

Controversially, however, companies also used HeLa cells to test cosmetics, and to measure the effects of radiation on human cells. They were used to test how human cells responded to other viruses, and were used in a number of cancer trials.

HeLa were the first ‘cell lines’, they stored well, were robust and could be sent out to laboratories all over the world. They replicate very fast, which is useful, but can also cause problems for scientists in terms of contamination of the lab.

HeLa cells have been used to study all kinds of viruses, and helped in the creation of a vaccine to HPV, the human papillomavirus, as well as to act as a testbed for new medications for cancer and Parkinson’s disease. They have also been used to test how certain products, such as cosmetics, affect human cells.

Because some HeLa cells behave differently to others, it has been possible for scientists to isolate a specific cell type, multiple it, and start a new cell line. This method of isolating a cell and keeping it alive is the basic technique behind I.V.F. which is so much part of our world today.

One discovery from HeLa cells has big potential in the fight against cancer. It was found that HeLa cells used an enzyme to repair their DNA and keep functioning when other cells would have died. Anti cancer trials against this enzyme are currently ongoing.

There are some who would say that the importance of HeLa cells in saving lives has been overstated. For example, saving one million lives with the polio vaccine, is small potatoes compared to, say the Measles vaccination, which has saved about 17 million lives since 2000.

Family anger

Henrietta’s family were angry when they finally heard the full story of the HeLa cells. They felt that Johns Hopkins Hospital had removed Henrietta’s cells without permission. The hospital had done that, they didn’t deny it, and neither did they deny that they hadn’t asked permission. Permission to do this wasn’t required back in 1951.

The Lacks family were also confused by all the scientific jargon that started to come their way. I think they their initial reaction was that their mother, and themselves had been exploited by researchers. For instance, they said that they gave blood to the researchers when asked, but the researchers did not bother to follow up with them when results came out or to explain results.

None of the children have developed their mother’s aggressive cancer, so Henrietta left no deadly legacy to her children.

There was a financial issue also, as far as the Lacks family were concerned because biomedical companies in the decades since their mother’s death had been mass producing HeLa cells, like a license to print money, and sending them out all over the world.

Fortunes were being made on the back of their mother’s cells, while they themselves, could even afford health insurance.

They were also apparently hurt that so many people, researchers, scientists and doctors, appeared to know so much about their mother, and that they, her children, knew very little.

Their father Day died in 2002 (41 years after his wife Henrietta) but the family only managed recently to pool together money for a headstone for his grave.

Johns Hopkins have honoured the contribution of Henrietta, and others like her, to their research, but they remain sensitive to criticism of their role in the Lacks’ story. They made the point that the hospital as it was in 1951 can’t be judged by today’s standards, and that patient consent, now a basic standard, wasn’t even considered in 1951.

The HeLa cells, Johns Hopkins state, were given away by their researcher Dr Gey, acting on his own and the hospital never patented the HeLa cells or sold them to make money. Dr Gey, they add was acting with good intent as he passed the cells on in the hope researchers could develop a module from which scientists could learn more about human cell function (and by corally, cancer cell function).

Immortal future?

HeLa cells have today multiplied to the point where they weigh some 20 tonnes, all together, while, according to the US Patent and Trademark Office there are close to 11,000 patents that involve HeLa cells. The cells are so widely available that they can be ordered for delivery on the Internet.

The words on Henrietta’s gravestone, composed by her grandchildren reads:

“In loving memory of a phenomenal woman, wife and mother who touched the lives of many. Here lies Henrietta Lacks (HeLa). Her immortal cells will continue to help mankind forever.”

 

 

 

 

 

 

Does bionics ultimately threaten our humanity?

First broadcast on Today with Sean O’Rourke, RTE Radio 1 (7-11-2016)

woman-with-bionic-arm

A woman with a ‘bionic’ arm. Science fiction is becoming science fact. (Image credit: Telegraph, UK)

Being human means our bodies, tissues and organs, will eventually deteriorate and malfunction. However, advances in medical science mean we can replace aging or diseased hips, knees, even hearts with advanced man-made materials. Many of our bodies, in this way, have become partly artificial or synthetic.

Advances in medical science and engineering mean that a lot more of us, in the developed western world at least, are set to have all manner of misfiring tissues and organs, maybe even our brains, replaced by something synthetic, better, and perhaps an awful lot better. The age of truly bionic man and woman is upon us.

History

The replacement of body parts with something man-made – what we now call bionics – is something that goes back a long way in human history.

Back as far as 1,500 BC there is a report of an Ancient egyptian mummy having its toe amputated and replaced by a prosthetic made of wood and leather. This was done apparently because the Egyptians felt that amputees would be cursed in life as well as the afterlife.

During the middle ages, crude prosthetic limbs ere available, but only to the very wealthy. These were made of wood, leather and metal, and the replacement leg would resemble a peg leg, with a hook replacing a hand.

Towards the end of the 18th century, in about 1897 the scientist Alessandro Volta – he of electricity fame – found that hearing could be restored by the use of electrical stimulation. This was a big advance in medical bionics.

However, it wasn’t until the mid 1970s that bionics entered the popular consciousness with the arrival of the Six Million Dollar Man and the Bionic Woman on our television screens.

The bionic man, played by Lee Majors, was human, had a bionic left eye, bionic legs, and a bionic right arm, while the Bionic Woman, played by Lindsay Wagner, had similar bionic limbs, but also had a bionic ear.

Science fiction becomes fact

What was science fiction then is now fact. A bionic eye, and ear have already been built, providing people with something even better than the original, while there have been remarkable advances in bionic limbs, including the human hand.

We could today, build a Bionic Man and Woman, with bionic ears, eyes, and limbs (not necessarily with the ability to run at 60 mph, but it could be done if felt necessary), but science is moving beyond what was speculation in the 1970s.

Neuroscientists have begun to decode the language of the brain, so that it is possible to know what word or series of words they are thinking. This is important because it means that people who are disabled, or paralysed can be now trained to move robotic limbs, or a new limb attached to their bodies.

Bionics and neuroscience is, thus, liberating disabled people from their physical dependence on people around them, and they can control their artificial limbs, or wheelchairs by simply thinking. At the same time, materials are becoming more sophisticated, and these can enhance malfunctioning biological tissues.

Bionic eyes, which pick up signals from the environment and transmit electrical impulses straight to the brain will soon help the blind ‘see’ again. A Bionic ear has been developed which restores hearing to the profoundly deaf via an implant which receives and transmits signals in the inner ear.

A bionic hand, with tremendous dexterity has been developed for a Danish man, which has been integrated by neurosurgeons with his existing nervous system. Bionic feet and legs under the thought control of the brain have been developed. A fully artificial heart has been successfully implanted, and there even moves to build an electronic implant to replace malfunctioing parts of the brain, or to construct a fully artificial brain based on the biological brain.

What this all means is that we are seeing a general trend towards humans becoming more artificial, as we live longer, and want to maintain the functioning of our limbs, organs and brain for as long as possible.

What do people want in life? They want to alive at the age of 90, but still active and healthy, physically and mentally. Bionics offers this, and its alluring.

No one knows where this all will end, or how artificial we will eventually become. Some believe that the trend towards having more and more bionic body parts threatens our humanity. How far can we go towards becoming artificial before we stop being human? It is a huge philosophical question we’ll face in future.

Irish research

The majority of the work in Ireland in this area is on the repair of body parts, through what is called regenerative medicine, rather than bionics, which involves the complete replacement of a tissue or organ, with something new and artificial.

Bionics, and regenerative medicine are moving ahead together and in parallel. It is perhaps a bit like the car industry.

There will always be a market for a brand new cars. Some people will buy a new car because they can afford it, and they want the latest technology and performance capabilities.

Others might want a new car because they have crashed their old one, and is beyond repair. However, there are also people who do not feel the need for a new car, and are quite happy to have their old car service, fixed, and on the road for as long as possible.

Ireland, in this sense, is more in the service and repair market, than the new car sales market, but both are equally important areas.

In terms of bionics, researchers in the University of Limerick, led by Dr Leonard O’Sullivan, along with an industrial partner, MTD Precision Engineering (Cork) are aiming to develop a full body Bionic Suit to help the elderly.

The Axo Suit project aims to help the aging live independently and stay mobile. The suit needs to be light enough to allow them to do daily tasks, such as going for a walk, or putting clothes on the line, but strong enough to give support.

The goal is to produce an ‘exoskeleton’ or bionic suit, which will sell for between 5k and 10k. This could keep many people out of nursing homes.

AT TCD, the Advanced Materials and Bioengineering Research Group (AMBER) led by Professor Danny Kelly’s group is involved in developing 3D bio-printing of tissues and organs, which could negate the need for organ transplants.

It could also lead to printing of organs or tissues made up of a combination of natural and artificial components, or even totally artificial components. There has already been a successful transplant of an artificial heart, and with natural organs hard to come by, this trend is set to increase.

Also at TCD, Dr Mark Ahearne’s group are developing bioengineered corneas which can be used for cornea transplants to restore sight or relieve pain. The artificial cornea has been made by using artificial fibres that mimic the ability of natural collagen fibres in the cornea to allow light to penetrate through. The researchers believe this will help people suffering from corneal blindness.

Meanwhile, At the Regenerative Medicine Institute at NUI Galway, or REMEDI there is a clinical trial underway where stem cells are being used to tackle osteoarthritis. The idea here is to insert stem cells into, for example knee joints damaged by arthritis to facilitate the growth of new, healthy bone tissue.

The potential for knee repair is incredible. For example, Professor Fergal O’Brien,  based at the Royal College of Surgeons in Ireland and AMBER, developed a new material which repaired the severely damaged knee joints of a competitive show jumping horse called Beyonce. The horse was facing euthanasia, but after the material was used, it began competitive show jumping again.

REMEDI researchers are also working with colleagues our Lady’s Hospital for Sick Children, to use stem cells to overcome congenital heart defects in children. In terms of organ repair, or fixing the sky is now the limit.

Is humanity threatened?

Bionics and regenerative medicine are set to help millions of people around the world who are suffering the effects of diseased or damaged tissues or organs. We are living longer, and this technology will help us live better, no doubt.

But, there are some issues, or concerns. For example, some well known scientists in the field, such as Hugh Herr at MIT, believe that synthetic materials such as titanium and silicon will one day replace flesh and blood.

Do we want that? Will this spell the end of humanity, at our own hand?

Herr got caught in a snow blizzard while climbing a mountain at the age of 17, and lost both legs to severe frostbite. Now in his 50s, he is the co-director of MIT’s Center for Extreme Bionics, where he is designing artificial legs (including his own) feet, ankles, knees and hips.

Herr’s view is that we will become more artificial, and eventually totally artificial, but that we will retain our humanity. We already have ‘augmented’ abilities, such as the ability to fly, and devices that improve our memory and ability to communicate.

Herr believes that our humanity, our ideas, our personalities, and our creativity, will become ‘embedded’ into artificial ‘designable’ bodies. We will come to see this as normal in the way, he says, and that artificial legs, or body parts will be considered part of us in the same way as biological legs are now. This is all part of the natural progression, or evolution, or humanity, Herr says.

Others disagree, and argue that as we shed our biology, we will shed our humanity, and that this technology represents an existential threat to mankind.

 

 

 

Is your cat dangerous? Microsoft aiming to ‘solve’ cancer problem; First human head transplant planned; Obesity gene & weight loss

This interview was first broadcast on the 22nd September 2016 on East Coast FM’s The Morning Show with Declan Meehan

indian-cat

Are cats a risk for to your mental and physical health, or have the risks been overblown? [Picture source: Wikipedia]

An ‘under the hood’ look at Dublin’s First ‘waste-to-energy’ plant

Covanta Incinerator

The Dublin ‘waste-to-energy’/incinerator plant – as it will look when completed – that will be taking household waste from waste operators in the Dublin region from September 2017LISTEN

LISTEN

This discussion about the science and technology underpinning the plant was broadcast on Today with Sean O’Rourke on (08/08/16)

Dubliners and visitors to the city in recent months may have noticed a huge addition being made to the skyline with a large structure under construction next to the two iconic chimney stacks at the Poolbeg ESB Station at Ringsend.

This is Dublin’s first ‘waste to energy’ plant, which its opponents, and there are many, would prefer to call an incinerator. According to its operators, Covanta, it will be capable of handling 600,000 tonnes of black bin waste, the vast majority of which will come from the city and the three Dublin county council areas

The plant will begin operating here in September 2017. Covanta state that it will convert waste from the city’s black bins – most of which would otherwise end up in landfill – into electricity for the grid and reduce our reliance on fossil fuels.

I went along to the plant last week (4/08/16) to see how the construction phase is progressing, and to have a look at some of the engineering and science that will underpin the plant’s operation.

Controversial

The Dublin waste to energy plant, or incinerator, is a highly contentious project. The story dates back to the late 1990s when the plan for an ‘incinerator’ or ‘waste to energy plant – the name depends on your view on it – was first mooted.

At that stage it had become obvious that Ireland needed to be able to tackle its own waste, rather than simply putting it into landfill, or exporting it.

In 2005 Dublin City Council awarded the contract for the plant to a Danish company called Elsam. Elsam was subsequently bought out by DONG energy generation, another Danish company. In 2007 the City Council sent a letter agreeing to engage DONG and Covanta Energy, a US company, to design build operate a Dublin waste to energy plant as a joint venture.

The EPA gave the plant a licence in 2008 and after the Commission for Energy Regulation gave authorizations to allow the plant to generate and supply energy (via electricity) in September 2009 there was a green light to start building.

It didn’t happen, and construction was suspended because the companies were unable to obtain a foreshore license to allow a development to take place on the coastline. The Minister for the Environment at the time, John Gormley, was opposed to granting the license and represented the local Dublin 4 area.

Finally, the license was granted, and Covanta re-commenced construction in 2014. There is significant progress now at the site, with the main structures in place, and it will began to accept waste from the local area in September 2017.

Operator

Covanta, is US based, but has built many ‘waste to energy’ plants on this side of the Atlantic and is looking to expand further into Europe. The firm has about 30 years of experience operating 45 ‘waste to energy’ facilities around the world.

Covanta like to think of themselves as being in the recycling business because they recycle about 500,000 of metals from the residual bottom ash left behind after municipal waste is incinerated or burned.

The majority of Covanta plants are based in the US and the company claim that there facilities there operator up to 90% better than government standards require.

In Dublin, they have an almost exclusively Irish management team, and have been able to easily hire people with the required expertise based here, or to lure back Irish people that have worked on waste to energy plants overseas.

Construction

The Poolbeg site for the plant is currently a hive of activity, with construction workers in yellow safety jackets, and helmets everywhere to be seen, swarming over the site. There is a sense of purpose, organisation and urgency as the company are working to a tight deadline and they are determined to began accepting waste in September of next year from local waste operators as they are required to do.

There are all manner of specialist construction workers at the site, as the piece of this gigantic puzzle are put into place. It is like watching a large football stadium, or a huge cruise liner being built, and it’s fascinating to watch.

Need

Most informed observers agree that Dublin, and Ireland, has a major problem with its waste, most of which is being exported.

There is very little capacity to deal with the large amount of waste being produced in the Dublin region, and Ireland as a whole, as there are just 5 landfills operational here that accept waste, and there is little or no likelihood of new landfills being set up as they are a health risk and no-one wants them.

This has been the situation for many years now, and what Ireland has been doing is exporting its waste, both its hazardous wastes, and the ‘ordinary’ black bin household waste overseas by ship, where plants in other countries burn the waste and recover energy, and dispose of the unusable or dangerous remnants.

The EU wants member states, and regions to deal with their waste in their own area, and this is also a key part of our national and regional waste policies here. That means that Dublin must deal with its own waste in Dublin, rather than the situation where hundreds of thousands of tonnes of waste are sent to towns like Drogheda and Arklow where they are ‘bailed’ and exported by ship. This is wrong in principle and storing waste like this represent a fire and health risk too.

We currently export about 560,000 tonnes of waste from Ireland each year, and the new Covanta plant has a capacity for about 600,000 tonnes.

Recycling does not appear to be solution to our waste problems, as even if we hit the predicted recycling rate here of 45-50% by 2020 there will still be a substantial amount of waste that has to be dealt with one way or another.

The waste that we produced can, with this plant, be put to good use to produce electricity and to reduce the need to important fossil fuels, such as gas from Russia and oil from the middle east, which are burned to produce electricity.

We need it. If we don’t, then in the absence of new landfill sites, the EU could decide that Ireland is no longer permitted to export its waste on a massive scale in contradiction of EU policies, and our own national policies. The EU have been very patient with us on this issue, going back almost two decades now.

Scale

The plant is huge. Is located at the end of South Bank Road, which is off the roundabout at Ringsend as you head south onto the coast road past Sandymount for those that know Dublin. It is next to the Poolbeg Power Plant, and beside the Irish sea, the river liffey, a sewage treatment plant, and a nature reserve.

The shape of it is very distinctive, it is very sleek and modern, and reminded me of a streamlined version, without the lifeboats and all the extras, of the kind of large cruise liner that we have grown used to seeing in Dublin Port these days.

The footprint of the plant covers about 3 football pitches, and at 52 metres at its highest point, it almost identical in height to the nearby Aviva Stadium, which is 4 metres shorter.

There will be two chimney stacks, which are not yet in place. These will be 100 metres tall, and from which will emerge, the company state, mostly water vapour at the end of the waste-to-energy process. That can be compared to the existing Poolbeg stacks, which stand at 207 metres, more than twice as tall.

The design is a kind of shell-like wrap around design, and the Covanta manager said that about 100 million euro was spent on design, to make the plant better fit in with its surroundings. In my opinion they have done a pretty good job in that, as it doesn’t look like a typical dirty power plant or industrial factory site.

In terms of the materials, there will be an extraordinary amount put into the construction such as 6,000 tons of reinforcing steel, enough concrete to fill about 6,500 concrete trucks and enough vertical supporting piles to run – if all the piles were laid out on the ground – the 64km from Poolbeg to Kildare town.

Waste to energy

When the plant is up and running, it will operate 24-7, although it is not permitted to take waste on a 24 hours basis.

The waste trucks will arrive from around Dublin – the busy time is often the mornings at these plants I’m’ told – they will be weighed and checked in before they go to a tipping hall when they unload their waste in a designated ‘bay’.

The waste will be unloaded out onto the floor and then put into a huge storage pit and thoroughly mixed before being lifted with a big mechanical grabber and put into what are called ‘hoppers’, and from the hoppers the waste travels to the combustion area where it is burned.

In the combustion chamber the waste will be burned at about 2,000F and the combustion a single load of waste from a hopper takes one or two hours. As waste is burned the heat will convert water in the steel tube lined walls that rise through ‘boiler tubes’ where it is superheated.

The steam will turns a turbine driven generator to produce electricity. The electricity produced by the turbine generator is will be exported to the grid for use by homes and business in the immediate Dublin 4, south city area.

Steam from this electricity generating process will be condensed back into water and returned to the boiler tubes, giving a efficient ‘closed loop’ system.

After this process, the volume of waste, Covanta tells me, will be reduced by 90%, with mainly ash and metal remaining. The ash can be landfilled or re-used. The metal such as iron and steel are recovered for re-use.A separate process recovers other metals like aluminium and copper.

The plant has pollution control equipment to ensure, the company states, that emissions are below limits to protect human health.

The Environmental Protection Agency (EPA) can come onto the site whenever they wish, and they can access Covanta’s emission monitoring computers.

The goal, Covanta say is to have real time information on emissions available to whomever is interested on the company website when the plant is running.

In terms of air pollution, acid gases will be neutralised using lime and a scrubbing, or cleaning, process, and carbon will be injected into the gaseous mixture for better control of heavy metal emissions.

Small particulates – which can cause human health problems, particularly breathing difficulties – are removed as emissions pass through a ‘bag house’. This uses thousands of fabric filter bags to catch and hold particulates.

All gases pass through the bags before leaving the stack. The control room monitors emissions through a real time emissions monitoring system and controls steam flow and other automated processes in the plant.

In Dublin, Covanta are using the nearby Liffey water to act as a coolant in the plant, and they are capturing rainwater and surface water for the same purpose.

Potential benefits

The plant will produce 60 megawatts of electricity per year, enough to heat 80,000 homes, and to provide district (local) heating for 50,000 homes.

It makes use of ‘grey water’ from the nearby sewage treatment plant – which would otherwise require energy to be further treated – to cool the process, which is important, as temperature regulation is central to the safe and efficient operation of the plant.

Most importantly, it has the capacity to take up to 1,800 tonnes of black bin waste per day, and up to 600,000 tonnes per year.

This will greatly benefit our environment, as some of this waste may have been going to landfill, which has health and safety risks attached. It will help us to comply with the EU requirement that we deal with our own waste, and it will mean that waste is dealt with close to where it is produced in Dublin and not stored around the city, or in port towns where it can be a fire or health risk. This was caused by waste storage and it was a dangerous fire.

It should also be remembered that in many places in Europe plants like this are welcomed by ‘green’ political parties as they help move us away from landfill, and promote the idea that waste should be treated as a recoverable resource.

Caution

A note of caution was sounded when it was reported last month by The Irish Times that a Covanta run plant in Canada did not meet emissions targets on dioxins and furans as set out by the Canadian Ministry of Environment.

I asked Covanta, based on that story, how could they reassure people in Dublin that the plant there was safe and would meet emissions targets.

Covanta responded that they had measures in place in the Canadian plant to shut it down as soon as a problem arose on one of two emissions stacks. This ensured that there was no risk to the environment or health of local residents, and that this was, Covanta told me, confirmed and supported by the Canadian authorities.

Furthermore, Covanta said all emissions from the Dublin plant will be independently monitored and verified by the Environmental Protection Agency.

Statement in full (for those that are interested) below from Covanta in response to my question about the issue that arose at Canadian plant.

A stack test in May 2016 at the Canadian plant indicated that the limit for dioxins and furans were exceeded on one line. The emissions exceedance for this unit was not representative of normal operations and previous stack tests and engineering runs have demonstrated compliance. Unit 2 continues to operate without issue with dioxin emissions at only 20% of the permitted levels.

While the emissions for unit 1 exceeded the limit at the stack, ambient air monitoring results of dioxins and furans upwind and downwind of the Canadian plant were well below the air quality standards set by the local environmental regulations. Soil sampling was also done and the testing found no elevated levels of dioxin/furans. The testing regime that Covanta had in place in Canada enabled the shut-down of Unit 1 as soon as the problem arose and thus ensured there was no risk at all to either the environment or the health of local residents which was confirmed by the relevant authorities.

The Dublin plant is technically different from the Canadian plant in many ways and the Poolbeg waste-to-energy process provider has successfully delivered 29 new plants across Europe since 2000 – 10 of these in the last 5 years and without any environmental incident. In addition Dublin Waste to Energy has invested heavily in experienced management and staff for the Poolbeg plant which will ensure smooth commissioning, start-up and operations.

The emissions limit values permitted for the Dublin plant have been set out by the EPA in accordance with best practice and EU legislation. In addition, the frequency and testing regime has been set out by the EPA and all emissions (in addition to be monitored by DWtE) will be independently monitored and verified by the EPA. As an indicator of Covanta’s diligence and commitment to the monitoring of stack emissions to ensure continuous compliance to the EU requirements, the plant has a full CEMS (Continuous Emission Monitoring System) as a stand-by to the two CEMS systems which monitor the emissions from the two lines.

Did Viking 1 find life on Mars in 1976? Gene therapy for cancer & heart disease; Relentless warming risks abrupt climate change

VL1_pan

The view of the Martian surface from the Viking 1 lander, which landed on Mars on 20th July 1976 (Credit: NASA)

LISTEN

The colour images of the Martian surface sent back from the Viking 1 probe which landed on Mars on 20th July 1976 made world headlines.

But, did one of the three experiments onboard Viking 1 set up to test for life find evidence of life in the martian soil? Many scientists believed this 40 years ago, and many more reputable scientists believe it today.

A new gene has been found which could provide a new therapy against cancer, by cutting off its oxygen supply, and heart disease, by increasing the growth of new blood vessels.

The month of June 2016 was the hottest on record, with records going back to 1880, continuing a pattern of relentless global warming. Are we moving towards a situation where an abrupt climate change, triggered by global warming, could lead to unexpected dangerous consequences for us all?

This was first broadcast on The Morning show with Declan Meehan on East Coast FM (21/07/16)

 

Meteorite Craters Cradled Early Life

First published in The Sunday Times (Irish ed.) 08.05.2016

Meteorite Craters

Is Plastic Poisoning Our Oceans

Listen to discussion on the plastic problem in our seas on Today with Sean O’Rourke RTE Radio 1 (broadcast, 8th March ’16)

PlasticsatSea

Plastics rubbish in our oceans is becoming a huge environment and health issue (Credit: The Daily Telegraph)

 

Plastic is all around us, in our clothes, glasses, computers, phones, toys and the packaging for food and drink products. Behind most election posters we looked at recently, there were strong plastic cables, holding those posters in place.

Plastic is lightweight, flexible, clear, opaque, almost unbreakable, and cheap to manufacture. It is a wondrous modern product, but it also has a dark side.

Waste

In Ireland we are producing in the region of 210,000 tonnes of plastic per year. Yet, we only recycle 36 per cent this plastic waste. That means that more than 100,000 tonnes of plastic here each year ends up buried in landfill sites, where experts say it could take 1,000 years to breakdown, or it finds it way to the sea.

Scientists in Ireland, and elsewhere, have grown concerned about a ‘steady stream’ of plastics entering our oceans and how that is affecting marine life. The evidence now emerging suggests that plastics are disrupting the balance of marine life to such an extent that it presents a real threat to all life on Earth.

About 45% of plastic waste is sent for burning, or waste-to-energy, as some would call it, while 15% or 30,000 tons is sent to landfill each year. The new Dublin ‘Waste-to-Energy’ plant due to open at Poolbeg in 2017, operated by Covanta, may help if it takes plastic waste that currently ends up put into domestic black bins – about 20% of all plastic waste.

Currently municipal solid waste, including plastic waste is sent for burning to European incinerators. Dealing with the plastic here, is in line with the proximity principle – that waste be dealt with as close to source as possible. It will also create jobs.

However, Repak are keen to say to people that they want more plastics put in the recycling, green bin, and not in the black bin, as some still do.

The amount of plastic waste is growing year on year by about 4% so this is not a problem that will be going away. The dumping of plastic waste is a big problem, according to a spokesperson for Repak (Ireland’s only industry-funded packaging recycling firm) with 80% of marine litter being plastic.

Repak that they are seeing less newspapers these days, and more cardboard (as a result of Internet shopping) and more plastic.

It is relatively easy to sort plastic bottles, he said, as they use optical sorters, which spot a bottle on a conveyor line and an air nozzle shoots the bottle off.

Interestingly, he said that some of the worst plastic packaging they have to deal with are rasher packs as they are made from a number of different plastic laminates and are very hard to break down.

This difficult mixed plastic is, however, useful as a ‘solid recovered fuel’ which is used as a replacement for coal in cement kilns.

All of the cement kilns in Ireland use this SRF and this is helping to reduce the amount of coal which we have to import – so plastic is not all bad,

Products 

PlasticProducts

Plastic products are everywhere in our modern societies, as manufacturers are attracted to its durable, inexpensive properties (Credit: http://www.aboutuganda.com)

Plastics products have been ubiquitous since around 1939, as during WW11 plastics production increased to replace scarce natural materials such as rubber.

But, it wasn’t until 1972, when scientists, by accident, that plastic waste was becoming a huge problem in our oceans.

A group of marine researchers were on a vessel in the Sargasso Sea, in the North Atlantic Ocean, trawling the surface of the ocean to collect a brown algae seaweed called Sargussum why they were interested in studying.

When they hauled in their first catch, they fund lots of tiny plastic particles. Further tows brought in further ‘catches’ of plastic. The finding of plastics in such numbers in the centre of the Ocean was a surprise and a concern.

Now, scientists estimate that there is more than 268,000 tons of plastic in the world’s oceans, some collecting, due to currents, in huge agglomerations of rubbish, and plastic with nicknames like the Great Pacific Garbage Patch (GPGP).

In parts of the GPGP there are 2 million pieces of plastic per square mile of ocean. But, as well as what are called macro-plastics, which can end up inside fish and marine creatures, blocking intestines, there are micro-plastics, which are much smaller, sometimes tiny piece of plastic, which are problematic too.

There are other garbage patches too, one off California, one close to Japan.

Ocean

Plastic waste can enter the sea from cities and towns on the coastline, but it can also travel along inland waterways from places far from the coastline.

A recent study in the United States, published in the top journal Science, showed how far plastic can travel to end up in the ocean The ocean is always downstream of illegal dumping sites, where rubbish, including plastics, first ends up in rivers, streams and lakes. That’s true in the US, and in Ireland too.

There is clearly a plastic problem in Irish rivers. For example, the River Liffey at the Strawberry Beds outside Dublin. When the river Liffey is low, plastic bags can be seen hanging like vegetation out of trees normally submerged in the water. This plastic will end up, like the Liffey’s waters, entering the Irish Sea.

The extent of the problem of plastic in rivers in developed countries can be judged from the few cities, like Los Angeles and Baltimore, where there are engineering measures in place to prevent waste, including plastic waste, from entering the sea.

In 2015, Baltimore caught 118,670 plastic bottles alone which were prevented from entering the sea, as they would otherwise have done. Baltimore, by the way, has about twice the population of Dublin. If we assume that Baltimore and Dublin are pretty similar economically, then there are more than 50,000 plastic bottles – conservative estimate – entering the sea at Dublin each year.

Microplastics

Microplastics smaller than 5 mm are entering the marine food chain (Credit: Archipelagos Institute)

Micro-plastics

Particularly damaging are micro-plastics; tiny pieces of plastic, which form when plastics are exposed to sunlight. micro-plastics are consumed by marine river life and then, when they make their way to the sea, by ocean creatures too.

Other research has shown that rivers and lakes in the US are full of tiny fibres of polyester and nylon, which are shed from clothes when they are laundered. The fibres are so small, they wash down drains into sewers and pass through the filtration system of wastewater plants, and end up out in the oceans too.

The fibres are swallowed by fish, and become lodged in their bodies, along with any bacteria or chemicals which may have been attached to the fibres in transit.

Mobile  

Ocean currents can transport plastic huge distances and computer models have shown that some plastics can travel more than 1,000 km in 60 days. So a piece of plastic could enter the sea in Dublin at the start of April, and end up floating off the coast of Lisbon by the end of May. It’s an international problem.

Marine life can mistake the larger plastic pieces for food, and plastics can thus get caught in their intestines. The fish or birds can’t get the plastic out of their bodies, and this hampers their ability to consume nutritional foods they need. They can ultimately end up starving to death. This has been reported in seabirds, turtles, fish and marine mammals.

When plastic pieces are smaller than 5 mm they are called micro-plastics. Micro-plastics act as an attractive solid surface for marine microbes, because nutrients, which the microbes need tend to accumulate on flat surfaces.

Marine creatures consume the micro-plastics, and the level of plastics then enters the marine food chain from the bottom up. There is on definite view on where this might end up, but certainly there are some very bad scenarios.

Marine life  

Amy Lusher, formerly a researcher at NUI Galway, and Simon Berrow, Chief Scientific Officer of the Irish Whale and Dolphin Group have carried out pioneering research in the problem of plastics at sea.

In May 2013, the two researchers were alerted when three beaked whales were found stranded on the north and west coast of Ireland. These creatures feed on squid in deep waters and little is known about them. They are rare, and it is highly unusual for three to be stranded within a few days and weeks of each other as happened here

An adult female was stranded at Five Fingers Strand in Donegal and two days later a whale calf was found washed ashore about 2km away. Then two weeks later, a second adult female beaked whale was found stranded at Ballyconneely in Co Galway. The immediate questions were why?

Post mortem results found that the two adult females had macro-plastics in their stomachs, while micro-plastics were identified throughout the digestive tract of the single whale that was examined for micro-plastics.

Simon Berrow told me in an email that it was “very disturbing” that micro-plastics were found throughout the digestive tract of the one beaked whale which was examined for micro-plastics, as these whales are offshore, deep-diving species which are very rarely even sighted by humans.

This was the first study, he said, that had directly identified micro-plastics, using a new technology, in the body of a cetacean species. Cetaceans are a group of 88 different species of whale, dolphin and porpoise. It suggests that even marine animals at the top of the food chain, feeding in deep waters, are ingesting significant amounts of micro-plastics into their bodies.

Simon is preparing a new research paper on the levels of micro and macro plastics in a range of dolphin species sampled in Irish waters over the last few years, and it will be interested to see if a similar result is confirmed again.

Strandings

There can be many reasons why a marine creature gets stranded, or washed up on a beach. For example, there has been an increase in the number of dead dolphins washing up on the west coast of Ireland since the start of 2016, with 28 animals stranded, the second highest number every recorded for the first two months of the year.

Most of the strandings, scientists say, were in Mayo, Sligo and Donegal and the evidence showed that the dolphins died when they were caught up in the large fishing nets of foreign registered super-trawlers fishing in Irish waters.

Dolphins and other cetaceans (whales and porpoises) are under pressure in Irish waters from the nest of super-trawlers, as well as depletion of their natural prey – fish – due to over-fishing by the same trawlers. Add to that, the issue of micro-plastics and it’s no surprise to note that dolphin numbers are declining.

Response   

It will require a systematic, international response, from governments around the world, but, getting that, is always difficult.

It has been left to individuals to try and do something. For example, Boyan Slat, a Dutch guy in his early twenties, got a lot of publicity in 2013 for coming up with a plan to clean up the ocean using a V-shaped array of floating barriers.

The array was designed in such a way that the plastic pieces concentrated in the centre of the V, where they were then scooped up by a conveyor belt driven by solar panels and dropped in a collecting station for recycling. A modification of this approach will be used off the coast of Japan later this year.

Boyan’s efforts largely went unnoticed until he gave a TEDx talk, called How the Oceans can Clean Themselves’ and this went viral.

Individuals can also help by signing up to an app called Marine Debris Tracker. This involves people on the beach logging litter finds, which is fed into a database which can better help scientists study ocean rubbish patterns.

Barrack Obama signed legislation in December last to ban the use of plastic micro-beads in cosmetics. Micro-beads are used as exfoliating agents, and in toothpaste. They are made from petrochemical plastics like polyethylene, and they are so small that they pass through waste water treatment plants.

The micro-beads remain in the environment for 50 years, and are causing a build up of micro-plastic pollution in places such as Lake Erie in the USA.

Plastisphere

The Plastisphere is the term that scientists use to describe how organisms have adapted in the oceans and elsewhere to live in harmony with human-made plastics.

Microbes are naturally attracted to plastics, which provide a solid surface to cling to in open ocean, and an all day buffet, as nutrients collect there too.

Some of the microbes ingest plastic too, and these plastic-loaded microbes are in turn eaten by plankton, which are tiny floating living organisms, which are in turn eaten by larger creatures such as fish and whales.

The reasons that scientists are concerned is that they have no idea how the presence of plastics in the marine food chain will play out into the future.

There is a concern, for example, that this could make global warming worse. Normally, in pre-plastisphere days, the oceans were a ‘carbon sink’ which absorbed excess carbon which could otherwise causing global warming.

This happened because tiny marine plants absorbed carbon dioxide, they were eaten by fish and other creatures, who pooped, and this poop, with carbon in it, fell safely to the bottom of the ocean.

The evidence now shows that plastic in poop causes it to break up easier, and this liberates carbon before it falls to the bottom of the ocean. So there is more carbon available to contribute to global warming.

There is also concern that plastics may be carrying harmful organisms, such as the carol pathogen reported in Hawaii and the Caribbean in 2014.

The worry is that plastics could transport some kind of microbe superbug across the world by travelling via ocean currents. The plastisphere offers microbes the chance to eat well and travel the world, even if they are dangerous pathogens.

The suspicion has to be that while micro-plastics have not been proven by scientists to have detrimental effects on marine life, that is what’s happening.

By the time the definitive proof is available, we may have already done irreparable damage to our oceans, as once something enters the food chain, as micro-plastics have done, it is going to be very difficult to remove it.

Seafood?  

Scientists are loath to say seafood is not safe, and it is an important source of protein, as well as Omega 3. It’s know that plastics also attract chemicals, some very nasty ones like mercury, which can end up in the food chain.

The consensus is that the risk from plastics, and the chemicals they attract is still low in fish generally and not enough to outweigh the benefits from eating fish But, if we continue the way we are going, that consensus could change.

 

 

 

 

 

 

 

 

 

 

%d bloggers like this: